Qualitative Spatial and Temporal Reasoning.
by
Ligozat, Gerard.
Title
:
Qualitative Spatial and Temporal Reasoning.
Author
:
Ligozat, Gerard.
ISBN
:
9781118601372
Personal Author
:
Ligozat, Gerard.
Edition
:
1st ed.
Physical Description
:
1 online resource (539 pages)
Series
:
Iste
Contents
:
Cover -- Qualitative Spatial and Temporal Reasoning -- Title Page -- Copyright Page -- Table of Contents -- Introduction. Qualitative Reasoning -- Chapter 1. Allen's Calculus -- 1.1. Introduction -- 1.1.1. "The mystery of the dark room" -- 1.1.2. Contributions of Allen's formalism -- 1.2. Allen's interval relations -- 1.2.1. Basic relations -- 1.2.2. Disjunctive relations -- 1.3. Constraint networks -- 1.3.1. Definition -- 1.3.2. Expressiveness -- 1.3.3. Consistency -- 1.4. Constraint propagation -- 1.4.1. Operations: inversion and composition -- 1.4.2. Composition table -- 1.4.3. Allen's algebra -- 1.4.4. Algebraic closure -- 1.4.5. Enforcing algebraic closure -- 1.5. Consistency tests -- 1.5.1. The case of atomic networks -- 1.5.2. Arbitrary networks -- 1.5.3. Determining polynomial subsets -- Chapter 2. Polynomial Subclasses of Allen's Algebra -- 2.1. "Show me a tractable relation!" -- 2.2. Subclasses of Allen's algebra -- 2.2.1. A geometrical representation of Allen's relations -- 2.2.2. Interpretation in terms of granularity -- 2.2.3. Convex and pre-convex relations -- 2.2.4. The lattice of Allen's basic relations -- 2.2.5. Tractability of convex relations -- 2.2.6. Pre-convex relations -- 2.2.7. Polynomiality of pre-convex relations -- 2.2.8. ORD-Horn relations -- 2.3. Maximal tractable subclasses of Allen's algebra -- 2.3.1. An alternative characterization of pre-convex relations -- 2.3.2. The other maximal polynomial subclasses -- 2.4. Using polynomial subclasses -- 2.4.1. Ladkin and Reinefeld's algorithm -- 2.4.2. Empirical study of the consistency problem -- 2.5. Models of Allen's language -- 2.5.1. Representations of Allen's algebra -- 2.5.2. Representations of the time-point algebra -- 2.5.3. ℵ0-categoricity of Allen's algebra -- 2.6. Historical note -- Chapter 3. Generalized Intervals -- 3.1. "When they built the bridge".
3.1.1. Towards generalized intervals -- 3.2. Entities and relations -- 3.3. The lattice of basic (p, q)-relations -- 3.4. Regions associated with basic (p, q)-relations -- 3.4.1. Associated polytopes -- 3.4.2. M-convexity of the basic relations -- 3.5. Inversion and composition -- 3.5.1. Inversion -- 3.5.2. Composition -- 3.5.3. The algebras of generalized intervals -- 3.6. Subclasses of relations: convex and pre-convex relations -- 3.6.1. (p, q)-relations -- 3.6.2. Convex relations -- 3.6.3. Pre-convex relations -- 3.7. Constraint networks -- 3.8. Tractability of strongly pre-convex relations -- 3.8.1. ORD-Horn relations -- 3.9. Conclusions -- 3.10. Historical note -- Chapter 4. Binary Qualitative Formalisms -- 4.1. "Night driving" -- 4.1.1. Parameters -- 4.1.2. A panorama of the presented formalisms -- 4.2. Directed points in dimension 1 -- 4.2.1. Operations -- 4.2.2. Constraint networks -- 4.2.3. Networks reducible to point networks -- 4.2.4. Arbitrary directed point networks -- 4.3. Directed intervals -- 4.3.1. Operations -- 4.3.2. Constraint networks and complexity -- 4.4. The OPRA direction calculi -- 4.5. Dipole calculi -- 4.6. The Cardinal direction calculus -- 4.6.1. Convex and pre-convex relations -- 4.6.2. Complexity -- 4.7. The Rectangle calculus -- 4.7.1. Convex and pre-convex relations -- 4.7.2. Complexity -- 4.8. The n-point calculus -- 4.8.1. Convexity and pre-convexity -- 4.9. The n-block calculus -- 4.9.1. Convexity and pre-convexity -- 4.10. Cardinal directions between regions -- 4.10.1. Basic relations -- 4.10.2. Operations -- 4.10.3. Consistency of basic networks -- 4.10.4. Applications of the algorithm -- 4.11. The INDU calculus -- 4.11.1. Inversion and composition -- 4.11.2. The lattice of INDU relations -- 4.11.3. Regions associated with INDU relations -- 4.11.4. A non-associative algebra -- 4.12. The 2n-star calculi.
4.12.1. Inversion and composition -- 4.13. The Cyclic interval calculus -- 4.13.1. Convex and pre-convex relations -- 4.13.2. Complexity of the consistency problem -- 4.14. The RCC-8 formalism -- 4.14.1. Basic relations -- 4.14.2. Allen's relations and RCC−8 relations -- 4.14.3. Operations -- 4.14.4. Maximal polynomial classes of RCC−8 -- 4.15. A discrete RCC theory -- 4.15.1. Introduction -- 4.15.2. Entities and relations -- 4.15.3. Mereology -- 4.15.4. Concept of contact and RCC−8 relations -- 4.15.5. Closure, interior and boundary -- 4.15.6. Self-connectedness -- 4.15.7. Paths, distance, and arc-connectedness -- 4.15.8. Distance between regions -- 4.15.9. Conceptual neighborhoods -- Chapter 5. Qualitative Formalisms of Arity Greater than 2 -- 5.1. "The sushi bar" -- 5.2. Ternary spatial and temporal formalisms -- 5.2.1. General concepts -- 5.2.2. The Cyclic point calculus -- 5.2.3. The Double-cross calculus -- 5.2.4. The Flip-flop and LR calculi -- 5.2.5. Practical and natural calculi -- 5.2.6. The consistency problem -- 5.3. Alignment relations between regions -- 5.3.1. Alignment between regions of the plane: the 5-intersection calculus -- 5.3.2. Ternary relations between solids in space -- 5.3.3. Ternary relations on the sphere -- 5.4. Conclusions -- Chapter 6. Quantitative Formalisms, Hybrids, and Granularity -- 6.1. "Did John meet Fred this morning?" -- 6.1.1. Contents of the chapter -- 6.2. TCSP metric networks -- 6.2.1. Operations -- 6.2.2. The consistency problem -- 6.3. Hybrid networks -- 6.3.1. Kautz and Ladkin's formalism -- 6.4. Meiri's formalism -- 6.4.1. Temporal entities and relations -- 6.4.2. Constraint networks -- 6.4.3. Constraint propagation -- 6.4.4. Tractability issues -- 6.5. Disjunctive linear relations (DLR) -- 6.5.1. A unifying formalism -- 6.5.2. Allen's algebra with constraints on durations -- 6.5.3. Conclusions.
6.6. Generalized temporal networks -- 6.6.1. Motivations -- 6.6.2. Definition of GTN -- 6.6.3. Expressiveness -- 6.6.4. Constraint propagation -- 6.6.5. Conclusions -- 6.7. Networks with granularity -- 6.7.1. Introduction -- 6.7.2. Granularities and granularity systems -- 6.7.3. Constraint networks -- 6.7.4. Complexity of the consistency problem -- 6.7.5. Propagation algorithms -- Chapter 7. Fuzzy Reasoning -- 7.1. "Picasso's Blue period" -- 7.2. Fuzzy relations between classical intervals -- 7.2.1. Motivations -- 7.2.2. The fuzzy Point algebra -- 7.2.3. The fuzzy Interval algebra -- 7.2.4. Fuzzy constraint networks -- 7.2.5. Algorithms, tractable subclasses -- 7.2.6. Assessment -- 7.3. Events and fuzzy intervals -- 7.3.1. Fuzzy intervals and fuzzy relations -- 7.3.2. Fuzzy constraints -- 7.3.3. An example of application -- 7.3.4. Complexity -- 7.3.5. Weak logical consequence -- 7.3.6. Assessment -- 7.4. Fuzzy spatial reasoning: a fuzzy RCC -- 7.4.1. Motivations -- 7.4.2. Fuzzy regions -- 7.4.3. Fuzzy RCC relations -- 7.4.4. Fuzzy RCC formulas -- 7.4.5. Semantics -- 7.4.6. Satisfying a finite set of normalized formulas -- 7.4.7. (n -- α, β)-models -- 7.4.8. Satisfiability and linear programming -- 7.4.9. Models with a finite number of degrees -- 7.4.10. Links with the egg-yolk calculus -- 7.5. Historical note -- Chapter 8. The Geometrical Approach and Conceptual Spaces -- 8.1. "What color is the chameleon?" -- 8.2. Qualitative semantics -- 8.3. Why introduce topology and geometry? -- 8.4. Conceptual spaces -- 8.4.1. Higher order properties and relations -- 8.4.2. Notions of convexity -- 8.4.3. Conceptual spaces associated to generalized intervals -- 8.4.4. The conceptual space associated to directed intervals -- 8.4.5. Conceptual space associated with cyclic intervals -- 8.4.6. Conceptual neighborhoods in Allen's relations.
8.4.7. Dominance spaces and dominance diagrams -- 8.5. Polynomial relations of INDU -- 8.5.1. Consistency -- 8.5.2. Convexity and Horn clauses -- 8.5.3. Pre-convex relations -- 8.5.4. NP-completeness of pre-convex relations -- 8.5.5. Strongly pre-convex relations -- 8.5.6. The subclass G -- 8.5.7. A summary of complexity results for INDU -- 8.6. Historical note -- Chapter 9. Weak Representations -- 9.1. "Find the hidden similarity" -- 9.2. Weak representations -- 9.2.1. Weak representations of the point algebra -- 9.2.2. Weak representations of Allen's interval algebra -- 9.2.3. Weak representations of the n-interval algebra -- 9.2.4. Constructing the canonical configuration -- 9.3. Classifying the weak representations of An -- 9.3.1. The category of weak representations of An -- 9.3.2. Reinterpretating the canonical construction -- 9.3.3. The canonical construction as adjunction -- 9.4. Extension to the calculi based on linear orders -- 9.4.1. Configurations -- 9.4.2. Description languages and associated algebras -- 9.4.3. Canonical constructions -- 9.4.4. The construction in the case of A Pointsn -- 9.5. Weak representations and configurations -- 9.5.1. Other qualitative formalisms -- 9.5.2. A non-associative algebra: INDU -- 9.5.3. Interpreting Allen's calculus on the integers -- 9.5.4. Algebraically closed but inconsistent scenarios: the case of cyclic intervals -- 9.5.5. Weak representations of RCC−8 -- 9.5.6. From weak representations to configurations -- 9.5.7. Finite topological models -- 9.5.8. Models in Euclidean space -- 9.6. Historical note -- Chapter 10. Models of RCC−8 -- 10.1. "Disks in the plane" -- 10.2. Models of a composition table -- 10.2.1. Complements on weak representations -- 10.2.2. Properties of weak representations -- 10.2.3. Models of the composition table of RCC−8 -- 10.3. The RCC theory and its models.
10.3.1. Composition tables relative to a logical theory.
Abstract
:
Starting with an updated description of Allen's calculus, the book proceeds with a description of the main qualitative calculi which have been developed over the last two decades. It describes the connection of complexity issues to geometric properties. Models of the formalisms are described using the algebraic notion of weak representations of the associated algebras. The book also includes a presentation of fuzzy extensions of qualitative calculi, and a description of the study of complexity in terms of clones of operations.
Local Note
:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term
:
Logic, Symbolic and mathematical.
Qualitative reasoning.
Space and time -- Mathematical models.
Spatial analysis (Statistics).
Genre
:
Electronic books.
Added Author
:
Ligozat, Grard.
Electronic Access
:
Library | Material Type | Item Barcode | Shelf Number | Status |
---|
IYTE Library | E-Book | 1254293-1001 | Q339.25 -- .L54 2012 EB | Ebrary E-Books |