Studying dopa adhesion on polystyrene under water
by
 
Yıldız,Remziye, author.

Title
Studying dopa adhesion on polystyrene under water

Author
Yıldız,Remziye, author.

Personal Author
Yıldız,Remziye, author.

Physical Description
xi, 64 leaves: charts;+ 1 computer laser optical disc

Abstract
Mussels wet adhesive performance has been arousing curiosity for a long time. It is found that 3,4-dihydroxyphenylalanine (DOPA) is responsible for adhesive properties of mussels. Despite a large body of research characterizing the interactions DOPA with hydrophilic surfaces, relatively few works have addressed the mechanism of interactions with hydrophobic surfaces. The benzene ring of DOPA is the main attributor to the adhesion on hydrophobic polystyrene (PS) surface. However, here we showed that two hydroxyl groups of catechol have also effects on wet adhesion. We studied wet adhesive properties of DOPA, tyrosine and phenylalanine functionalized PEG polymers, PEG-(NBoc- L-DOPA)4, PEG-(N-Boc-L-Tyrosine)4, PEG-(N-Boc-L-Phenylalanine)4, on spin labeled PS nanobeads (SL-PS) by electron paramagnetic resonance (EPR) spectroscopy. Surface coverage ratio of SL-PS upon additions of PEG-(N-Boc-L-DOPA)4, PEG-(NBoc- L-Tyrosine)4 and PEG-(N-Boc-L-Phenylalanine)4 showed that SL-PS was covered with 70%, 50% and 0%, respectively. This showed that spontaneous wet adhesion on PS increases with the number of amino acids hydroxyl groups. This is also supported with the density functional theory (DFT) energy calculations and ab-initio molecular dynamics (AIMD) simulations. In water, interactions between water molecules and hydroxyl groups on the catechol induce catechol adhesion via π-π stacking between the catechol and double styrene rings which were already tilted out with water.

Subject Term
Dopa.
 
Polystyrene.

Added Author
Akdoğan, Yaşar,
 
Emrullahoğlu, Mustafa,

Added Corporate Author
İzmir Institute of Technology. Materials Science and Engineering.

Added Uniform Title
Thesis (Master)--İzmir Institute of Technology:Materials Science and Engineering.
 
İzmir Institute of Technology: Materials Science and Engineering--Thesis (Master).

Electronic Access
Access to Electronic Versiyon.


LibraryMaterial TypeItem BarcodeShelf NumberStatus
IYTE LibraryThesisT002359TP1180.S7 Y51 2021Tez Koleksiyonu
IYTE LibrarySupplementary CD-ROMROM3518TP1180.S7 Y51 2021 EK.1Tez Koleksiyonu