Effect of gold nanorod properties on LSPR response
by
 
Kılıç, Şebnem, author.

Title
Effect of gold nanorod properties on LSPR response

Author
Kılıç, Şebnem, author.

Personal Author
Kılıç, Şebnem, author.

Physical Description
xii, 51 leaves: charts;+ 1 computer laser optical disc.

Abstract
Optical qualities make gold nanorods (GNRs) excellent for plasmonic biosensors. Localized surface plasmon resonance (LSPR) phenomenon which occurs on GNR surfaces enables the creation of highly sensitive biosensors. The physical properties such as aspect ratio and size are directly related to the LSPR response of GNRs. The aim of this study is to investigate the impact of the aspect ratio (AR) and the interparticle distance on the localized surface plasmon resonance (LSPR) response of GNRs decorated glass sensor chips. For this aim, GNRs were first synthesized using a seed-mediated growth method. The effect of AgNO3 concentration on the AR of GNRs was investigated. It was observed that increasing AgNO3 concentration resulted in GNRs with higher AR and a red shift in the longitudinal plasmon peak wavelength. GNRs with an AR of 4, 6 and 8 were successfully synthesized. Next, the effect of the stabilizer molecule type and molecular weight on the distribution of GNRs on the silanized glass surface was investigated. It was found that the APTES modified glass surfaces cannot be coated with CTAB stabilized GNRs. Using GNRs stabilized with PEG5K resulted in a more homogeneous distribution of GNRs on the glass surface with respect to GNRs stabilized with PEG2K. The interparticle distance between GNRs on the glass surface was successfully controlled by simply concentrating or diluting the GNR solution used for coating the glass surfaces. It was observed that the LSPR peak shifts decreased upon binding of analytes as the interparticle distance between GNRs decreased in the studied range. On the other hand, as the AR decreased, the LSPR response of the GNRs shifted blue. The results presented in this thesis may contribute to future research to improve the potential of LSPR-based biosensors for diverse biomedical and diagnostic applications.

Subject Term
Nanobiotechnology.
 
Surface plasmon resonance.

Added Author
Bulmuş Zareie, Esma Volga,
 
Tekin, Hüseyin Cumhur,

Added Corporate Author
İzmir Institute of Technology. Biotechnology.

Added Uniform Title
Thesis (Master)--İzmir Institute of Technology: Biotechnology.
 
İzmir Institute of Technology: Biotechnology--Thesis (Master).

Electronic Access
Access to Electronic Versiyon.


LibraryMaterial TypeItem BarcodeShelf Number
IYTE LibraryThesisT002819TP248.25.N35 K48 2023
IYTE LibrarySupplementary CD-ROMROM3961TP248.25.N35 K48 2023 EK.1