Spectral Methods Evolution to Complex Geometries and Applications to Fluid Dynamics
by
 
Canuto, Claudio. author.

Title
Spectral Methods Evolution to Complex Geometries and Applications to Fluid Dynamics

Author
Canuto, Claudio. author.

ISBN
9783540307280

Personal Author
Canuto, Claudio. author.

Physical Description
XXX, 596 p. online resource.

Series
Scientific Computation,

Contents
Fundamentals of Fluid Dynamics -- Single-Domain Algorithms and Applications for Stability Analysis -- Single-Domain Algorithms and Applications for Incompressible Flows -- Single-Domain Algorithms and Applications for Compressible Flows -- Discretization Strategies for Spectral Methods in Complex Domains -- Solution Strategies for Spectral Methods in Complex Domains -- General Algorithms for Incompressible Navier-Stokes Equations -- Spectral Methods Primer.

Abstract
Spectral methods, particularly in their multidomain version, have become firmly established as a mainstream tool for scientific and engineering computation. While retaining the tight integration between the theoretical and practical aspects of spectral methods that was the hallmark of their 1988 book, Canuto et al. now incorporate the many improvements in the algorithms and the theory of spectral methods that have been made since then. This second new treatment, Evolution to Complex Geometries and Applications to Fluid Dynamics, provides an extensive overview of the essential algorithmic and theoretical aspects of spectral methods for complex geometries, in addition to detailed discussions of spectral algorithms for fluid dynamics in simple and complex geometries. Modern strategies for constructing spectral approximations in complex domains, such as spectral elements, mortar elements, and discontinuous Galerkin methods, as well as patching collocation, are introduced, analyzed, and demonstrated by means of numerous numerical examples. Representative simulations from continuum mechanics are also shown. Efficient domain decomposition preconditioners (of both Schwarz and Schur type) that are amenable to parallel implementation are surveyed. The discussion of spectral algorithms for fluid dynamics in single domains focuses on proven algorithms for the boundary-layer equations, linear and nonlinear stability analyses, incompressible Navier-Stokes problems, and both inviscid and viscous compressible flows. An overview of the modern approach to computing incompressible flows in general geometries using high-order, spectral discretizations is also provided. The recent companion book Fundamentals in Single Domains discusses the fundamentals of the approximation of solutions to ordinary and partial differential equations on single domains by expansions in smooth, global basis functions. The essential concepts and formulas from this book are included in the current text for the reader’s convenience.

Subject Term
Mathematics.
 
Computer science -- Mathematics.
 
Mathematical physics.
 
Physics.
 
Mechanics.
 
Fluids.
 
Hydraulic engineering.
 
Computational Mathematics and Numerical Analysis.
 
Numerical and Computational Methods.
 
Engineering Fluid Dynamics.
 
Mathematical Methods in Physics.

Added Author
Quarteroni, Alfio.
 
Hussaini, M. Yousuff.
 
Zang, Thomas A.

Added Corporate Author
SpringerLink (Online service)

Electronic Access
http://dx.doi.org/10.1007/978-3-540-30728-0


LibraryMaterial TypeItem BarcodeShelf NumberStatus
IYTE LibraryE-Book509789-1001QA71 -90Online Springer