Skip to:ContentBottom
Cover image for Thermal Adaptation : A Theoretical and Empirical Synthesis.
Thermal Adaptation : A Theoretical and Empirical Synthesis.
Title:
Thermal Adaptation : A Theoretical and Empirical Synthesis.
Author:
Angilletta Jr., Michael J.
ISBN:
9780191547201
Personal Author:
Physical Description:
1 online resource (304 pages)
Contents:
Contents -- Preface -- 1 Evolutionary Thermal Biology -- 1.1 The challenge of evolutionary thermal biology -- 1.2 Thermal reaction norms -- 1.3 The role of theory -- 1.4 Theoretical approaches to evolutionary thermal biology -- 1.4.1 Optimality models -- 1.4.2 Quantitative genetic models -- 1.4.3 Allelic models -- 1.4.4 The complementarity of theory -- 1.5 Empirical tools of the evolutionary thermal biologist -- 1.5.1 Quantifying selection -- 1.5.2 Experimental evolution -- 1.5.3 Comparative analysis -- 1.6 Conclusions -- 2 Thermal Heterogeneity -- 2.1 Operative environmental temperature -- 2.2 Global patterns of operative temperature -- 2.2.1 Latitudinal clines -- 2.2.2 Altitudinal clines -- 2.3 Quantifying local variation in operative temperatures -- 2.3.1 Mathematical models -- 2.3.2 Physical models -- 2.3.3 Statistical models -- 2.4 Conclusions -- 3 Thermal Sensitivity -- 3.1 Patterns of thermal sensitivity -- 3.2 Proximate mechanisms and tradeoffs -- 3.2.1 Thermal effects on enzymes (and other proteins) -- 3.2.2 Membrane structure -- 3.2.3 Oxygen limitation -- 3.2.4 Conclusions from considering proximate mechanisms -- 3.3 Optimal performance curves -- 3.3.1 Optimal performance curves: survivorship and related performances -- 3.3.2 Optimal performance curves: fecundity and related performances -- 3.3.3 Contrasting the two models -- 3.4 Using models to understand natural patterns -- 3.4.1 Survivorship -- 3.4.2 Locomotion -- 3.4.3 Development -- 3.4.4 Growth -- 3.4.5 Reproduction -- 3.4.6 Why do certain patterns differ from predicted ones? -- 3.5 Have we mischaracterized thermal clines? -- 3.5.1 Reciprocal transplant experiments -- 3.5.2 Laboratory selection experiments -- 3.5.3 Conclusions from reciprocal transplant and laboratory selection experiments -- 3.6 Have phenotypic constraints been correctly identified?.

3.6.1 A jack of all temperatures can be a master of all -- 3.6.2 The proximate basis of performance determines tradeoffs -- 3.7 Do all performances affect fitness? -- 3.8 Does genetic variation constrain thermal adaptation? -- 3.8.1 A quantitative genetic model based on multivariate selection theory -- 3.8.2 A genetic model for survivorship and related performances -- 3.8.3 A genetic model for fecundity and related performances -- 3.8.4 Predictions of quantitative genetic models depend on genetic parameters -- 3.9 Does gene flow constrain thermal adaptation? -- 3.10 Conclusions -- 4 Thermoregulation -- 4.1 Quantifying patterns of thermoregulation -- 4.2 Benefits and costs of thermoregulation -- 4.2.1 Benefits of thermoregulation -- 4.2.2 Costs of thermoregulation -- 4.3 An optimality model of thermoregulation -- 4.4 Do organisms thermoregulate more precisely when the benefits are greater? -- 4.5 Nonenergetic benefits of thermoregulation -- 4.5.1 Thermoregulation during infection -- 4.5.2 Thermoregulation during pregnancy -- 4.6 Do organisms thermoregulate less precisely when the costs are greater? -- 4.7 Nonenergetic costs of thermoregulation -- 4.7.1 Aggressive interactions with competitors -- 4.7.2 Risk of predation or parasitism -- 4.7.3 Risk of desiccation -- 4.7.4 Missed opportunities for feeding or reproduction -- 4.7.5 Interactions between different costs -- 4.8 Endothermic thermoregulation -- 4.8.1 The evolutionary origins of endothermy -- 4.8.2 Optimal thermoregulation by endotherms -- 4.9 Conclusions -- 5 Thermal Acclimation -- 5.1 Patterns of thermal acclimation -- 5.2 The beneficial acclimation hypothesis -- 5.2.1 Developmental acclimation -- 5.2.2 Reversible acclimation -- 5.2.3 Beyond the beneficial acclimation hypothesis -- 5.3 Costs of thermal acclimation -- 5.3.1 Costs of energetic demands -- 5.3.2 Costs of time lags.

5.3.3 Interaction between costs -- 5.4 Optimal acclimation of performance curves -- 5.4.1 Optimal developmental acclimation -- 5.4.2 Optimal reversible acclimation -- 5.4.3 Relaxing assumptions about fitness -- 5.5 Evidence of optimal acclimation -- 5.5.1 Does the thermal optimum acclimate more than the performance breadth? -- 5.5.2 Do organisms from variable environments acclimate more than organisms from stable environments? -- 5.6 Constraints on the evolution of acclimation -- 5.6.1 Genetic variance and covariance -- 5.6.2 Gene flow -- 5.7 Toward ecological relevance -- 5.8 Conclusions -- 6 Temperature and the Life History -- 6.1 The link between performance and the life history -- 6.2 General patterns of age and size at maturity -- 6.2.1 Thermal plasticity of age and size at maturity -- 6.2.2 Thermal clines in age and size at maturity -- 6.2.3 Experimental evolution of age and size at maturity -- 6.3 Optimal reaction norms for age and size at maturity -- 6.3.1 A comparison of two modeling approaches -- 6.3.2 Thermal effects on juvenile mortality -- 6.3.3 Thermal constraints on maximal body size -- 6.3.4 Thermal effects on population growth -- 6.3.5 A synergy of evolutionary mechanisms -- 6.4 General patterns of reproductive allocation -- 6.4.1 Thermal plasticity of offspring size -- 6.4.2 Thermal clines in offspring size -- 6.4.3 Experimental evolution of offspring size -- 6.5 Optimal size and number of offspring -- 6.5.1 Direct effect of temperature on the optimal offspring size -- 6.5.2 Indirect effects of temperature on the optimal offspring size -- 6.5.3 Teasing apart direct and indirect effects on reproductive allocation -- 6.6 Optimal variation in offspring size -- 6.7 Conclusions -- 7 Thermal Coadaptation -- 7.1 Traits interact to determine fitness -- 7.2 Coadaptation of thermal sensitivity and thermal acclimation.

7.3 Coadaptation of thermal physiology and thermoregulatory behavior -- 7.3.1 Mechanisms favoring a mismatch between preferred temperatures and thermal optima -- 7.3.2 Predicting coadapted phenotypes -- 7.4 Coadaptation of thermoregulatory behavior, thermal physiology, and life history -- 7.5 Constraints on coadaptation -- 7.6 Conclusions -- 8 Thermal Games -- 8.1 Filling the ecological vacuum -- 8.2 Approaches to the study of frequency-dependent selection -- 8.3 Optimal thermoregulation in an evolutionary game -- 8.3.1 Competition during thermoregulation -- 8.3.2 Predation during thermoregulation -- 8.3.3 Relaxing assumptions of simple models -- 8.4 Optimal performance curves in an evolutionary game -- 8.4.1 The coevolution of thermal optima between species -- 8.4.2 The coevolution of thermal breadths between species -- 8.4.3 Gene flow and the coevolution of thermal optima -- 8.5 Life-history evolution in a thermal game -- 8.6 Conclusions -- 9 Adaptation to Anthropogenic Climate Change -- 9.1 Recent patterns of climate change -- 9.1.1 Global change -- 9.1.2 Regional change -- 9.1.3 Local change -- 9.2 Observed responses to recent thermal change -- 9.2.1 Shifts in phenology -- 9.2.2 Shifts in geographic ranges -- 9.2.3 Disruption of ecological interactions -- 9.2.4 Changes in primary productivity -- 9.3 Predicting ecological responses to global warming -- 9.3.1 Correlative versus mechanistic models -- 9.3.2 Mechanistic models of responses to environmental warming -- 9.3.3 Predicting differential responses of populations and species -- 9.4 Adaptation to directional thermal change -- 9.4.1 Adaptation of thermoregulation -- 9.4.2 Adaptation of the thermal optimum -- 9.4.3 Adaptation of the performance breadth -- 9.5 Thermal games in a warming world -- 9.6 Evolutionary consequences of gene flow in a warming world.

9.6.1 Spatially heterogeneous warming can reduce the flow of maladapted genotypes -- 9.6.2 Spatially heterogeneous warming can increase the flow of preadapted genotypes -- 9.7 Conclusions -- References -- Author Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- Y -- Z -- Species Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- K -- L -- M -- N -- O -- P -- R -- S -- T -- U -- V -- X -- Z -- Subject Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- V -- W.
Abstract:
Temperature impacts the behaviour, physiology and ecology of all organisms more than any other abiotic variable. In this book, the author draws on theory from the more general discipline of evolutionary ecology to foster a fresh approach toward a theory of thermal adaptation.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: