
Geometry of Nonholonomically Constrained Systems.
Title:
Geometry of Nonholonomically Constrained Systems.
Author:
Cushman, Richard.
ISBN:
9789814289498
Personal Author:
Physical Description:
1 online resource (421 pages)
Series:
Advanced Series in Nonlinear Dynamics ; v.26
Advanced Series in Nonlinear Dynamics
Contents:
Contents -- Acknowledgments -- Foreword -- 1. Nonholonomically constrained motions -- 1.1 Newton's equations -- 1.2 Constraints -- 1.3 Lagrange-d'Alembert equations -- 1.4 Lagrange derivative in a trivialization -- 1.5 Hamilton-d'Alembert equations -- 1.6 Distributional Hamiltonian formulation -- 1.6.1 The symplectic distribution (H,) -- 1.6.2 H and in a trivialization -- 1.6.3 Distributional Hamiltonian vector field -- 1.7 Almost Poisson brackets -- 1.7.1 Hamilton's equations -- 1.7.2 Nonholonomic Dirac brackets -- 1.8 Momenta and momentum equation -- 1.8.1 Momentum functions -- 1.8.2 Momentum equations -- 1.8.3 Homogeneous functions -- 1.8.4 Momenta as coordinates -- 1.9 Projection principle -- 1.10 Accessible sets -- 1.11 Constants of motion -- 1.12 Notes -- 2. Group actions and orbit spaces -- 2.1 Group actions -- 2.2 Orbit spaces -- 2.3 Isotropy and orbit types -- 2.3.1 Isotropy types -- 2.3.2 Orbit types -- 2.3.3 When the action is proper -- 2.3.4 Stratification on by orbit types -- 2.4 Smooth structure on an orbit space -- 2.4.1 Differential structure -- 2.4.2 The orbit space as a differential space -- 2.5 Subcartesian spaces -- 2.6 Stratification of the orbit space by orbit types -- 2.6.1 Orbit types in an orbit space -- 2.6.2 Stratification of an orbit space -- 2.6.3 Minimality of S -- 2.7 Derivations and vector fields on a differential space -- 2.8 Vector fields on a stratified differential space -- 2.9 Vector fields on an orbit space -- 2.10 Tangent objects to an orbit space -- 2.10.1 Stratified tangent bundle -- 2.10.2 Zariski tangent bundle -- 2.10.3 Tangent cone -- 2.10.4 Tangent wedge -- 2.11 Notes -- 3. Symmetry and reductio -- 3.1 Dynamical systems with symmetry -- 3.1.1 Invariant vector fields -- 3.1.2 Reduction of symmetry -- 3.1.3 Reduction for or a free and proper G-action -- 3.1.4 Reduction of a nonfree, proper G-action.
3.2 Nonholonomic singular reduction for a proper action -- 3.3 Nonholonomic reduction for a free and proper action -- 3.4 Chaplygin systems -- 3.5 Orbit types and reduction -- 3.6 Conservation laws -- 3.6.1 Momentum map -- 3.6.2 Gauge momenta -- 3.7 Lifted actions and the momentum equation -- 3.7.1 Lifted actions -- 3.7.2 Momentum equation -- 3.8 Notes -- 4.Reconstruction, relative equilibria and relative periodic orbits -- 4.1 Reconstruction -- 4.1.1 Reconstruction for proper free actions -- 4.1.2 Reconstruction for nonfree proper actions -- 4.1.3 Application to nonholonomic systems -- 4.2 Relative equilibria -- 4.2.1 Basic properties -- 4.2.2 Quasiperiodic relative equilibria -- 4.2.3 Runaway relative equilibria -- 4.2.4 Relative equilibria when the action is not free -- 4.2.5 Other relative equilibria in a G-orbit -- 4.2.5.1 When the G-action is free -- 4.2.5.2 When the G-action is not free -- 4.2.6 Smooth families of quasiperiodic relative equilibria -- 4.2.6.1 Elliptic, regular, and stably elliptic elements of g -- 4.2.6.2 When the G-action is free and proper -- 4.2.6.3 When the G-action is proper but not free -- 4.3 Relative periodic orbits -- 4.3.1 Basic properties -- 4.3.2 Quasiperiodic relative periodic orbits -- 4.3.3 Runaway relative period orbits -- 4.3.4 When the G-action is not free -- 4.3.5 Other relative periodic orbits in the (G × R)-orbit -- 4.3.6 Smooth families of quasiperiodic relative periodic orbits -- 4.3.6.1 Elliptic, regular, and stably elliptic elements of G -- 4.3.6.2 When the G-action is free -- 4.3.6.3 When the G-action is not free -- 4.4 Notes -- 5. Caratheodory's sleigh -- 5.1 Basic set up -- 5.1.1 Configuration space -- 5.1.2 Kinetic energy -- 5.1.3 Nonholonomic constraint -- 5.2 Equations of motion -- 5.2.1 Lagrange-d'Alembert equations -- 5.2.2 Nonholonomic Dirac brackets.
5.2.3 Lagrange-d' Alembert in a trivialzation -- 5.2.4 Almost Poisson bracket form -- 5.2.4.1 H and in a trivialization -- 5.2.4.2 Almost Poisson bracket of c1 and c2 -- 5.2.4.3 Equations of motion -- 5.2.5 Distributional Hamiltonian system -- 5.2.5.1 Lie group model -- 5.2.5.2 The distribution H and its symplectic form H -- 5.2.5.3 Equations of motion -- 5.3 Reduction of the E(2) symmetry -- 5.3.1 The E(2) symmetry -- 5.3.2 The momentum equation -- 5.3.3 E(2)-reduced equations of motion -- 5.3.3.1 The E(2)-reduced equations using almost Poisson brackets -- 5.4 Motion the E(2) reduced phase space -- 5.5 Reconstruction -- 5.5.1 Relative equilibria -- 5.5.2 General motions -- 5.5.3 Motion of a material point on the sleigh -- 5.6 Notes -- 6. Convex rolling rigid body -- 6.1 Basic set up -- 6.2 Unconstrained motion -- 6.3 Constraint distribution -- 6.4 Constrained equations of motion -- 6.4.1 Vector field on D -- 6.4.2 Computation of H and in a trivialization -- 6.4.3 Distributional vector field in a trivialization -- 6.5 Reduction of the translational R2 symmetry -- 6.5.1 The R2-reduced equations of motion -- 6.5.2 Comparison with the Euler-Lagrange equations -- 6.5.3 The R2-reduced distribution HDN and the 2-form -- 6.6 Reduction of E(2) symmetry -- 6.6.1 E(2) symmetry -- 6.6.2 E(2) (2)-orbit space -- 6.6.3 E(2)-reduced distribution and 2-form -- 6.6.4 Reduced distributional system -- 6.7 Body of revolution -- 6.7.1 Geometric and dynamic symmetry -- 6.7.2 Reduction of the induced axial symmetry -- 6.7.3 Axially reduced equations of motion -- 6.7.3.1 Chaplygin equation -- 6.7.3.2 Two additional constants of motion -- 6.7.3.3 The total energy -- 6.7.3.4 A conservatative Newtonian system -- 6.7.3.5 Solution of the one degree of freedom system -- 6.7.3.6 Quasi-periodic solutions -- 6.7.3.7 Appendix. The E(2) × S1-reduced equations of motion.
6.8 Notes -- 7. The rolling disk -- Summary -- 7.1 General set up -- 7.2 Reduction of the E(2) × S1 symmetry -- 7.2.1 First E(2), then S1 -- 7.2.2 First S1, then E(2) -- 7.3 Reconstruction -- 7.3.1 The E(2)-reduced flow -- 7.3.2 The full motion -- 7.3.3 The S1-reduced flow -- 7.3.4 Geometry of the E(2) × S1 reduction map -- 7.4 Relative equilibria -- 7.4.1 The manifold of relative equilibria -- 7.4.2 One parameter groups -- 7.4.3 Angular speeds in terms of invariants -- 7.4.4 Motion of the relative equilibria -- 7.4.5 Nearly flat relative equilibria -- 7.5 A potential function on an interval -- 7.5.1 Chaplygin's equations -- 7.5.2 A conservative Newtonian system -- 7.5.3 Qualitative behavior -- 7.5.4 A special case of falling flat -- 7.6 Scaling -- 7.7 Solutions of the rescaled Chaplygin equations -- 7.7.1 The recessive solution -- 7.7.2 Asymptotics -- 7.7.3 The normalized even and odd solutions -- 7.7.4 Computation of r(0) and r0(0) -- 7.8 Bifurcations of a vertical disk -- 7.8.1 Degenerate equilibria -- 7.8.2 Vertical degenerate relative equilibria -- 7.8.3 Normal form of the potential -- 7.8.4 Cusps of the degeneracy locus -- 7.9 The global geometry of the degeneracy locus -- 7.9.1 The circle of degenerate critical points -- 7.9.2 A global description of the degeneracy locus -- 7.10 Falling flat -- 7.10.1 When the disk does not fall flat -- 7.10.2 When the disk falls flat -- 7.10.3 Limiting behavior when falling flat -- 7.11 Near falling flat -- 7.11.1 Elastic reflection -- 7.11.2 The increase of the angles and -- 7.11.3 Motions near falling flat -- 7.12 The bifurcation diagram -- 7.12.1 The bifurcation set B -- 7.12.2 Off the bifurcation set B -- 7.12.3 On a coordinate axis or in an open quadrant -- 7.12.4 Near `± -- 7.12.5 Global qualitative description of V -- 7.12.6 Global description of the orbits of X -- 7.13 The integral map.
7.13.1 Regular values of I -- 7.13.2 The global geometry of the critical value surface -- 7.13.2.1 The critical value surface -- 7.13.2.2 The singularities of -- 7.13.2.3 The global structure of -- 7.14 Constant energy slices -- 7.14.1 Numerical pictures of the constant energy slices -- 7.14.2 Geometric features of the constant energy slices -- 7.14.3 Outward radial growth -- 7.14.4 The swallow tail sections -- 7.14.5 Behavior of cusp points -- 7.14.6 Over the coordinate axes in the ( 3, 4)-plane -- 7.14.7 over `± -- 7.15 The spatial rotational shift -- 7.15.1 The shift -- 7.15.2 Quasiperiodic motion -- 7.15.3 The spatial rotational shift -- 7.15.4 Near elliptic relative equilibria -- 7.15.5 Nearly flat solutions -- 7.16 Notes -- Bibliography -- Index.
Abstract:
This book gives a modern differential geometric treatment of linearly nonholonomically constrained systems. It discusses in detail what is meant by symmetry of such a system and gives a general theory of how to reduce such a symmetry using the concept of a differential space and the almost Poisson bracket structure of its algebra of smooth functions. The above theory is applied to the concrete example of Carathéodory's sleigh and the convex rolling rigid body. The qualitative behavior of the motion of the rolling disk is treated exhaustively and in detail. In particular, it classifies all motions of the disk, including those where the disk falls flat and those where it nearly falls flat. The geometric techniques described in this book for symmetry reduction have not appeared in any book before. Nor has the detailed description of the motion of the rolling disk. In this respect, the authors are trail-blazers in their respective fields. Sample Chapter(s). Foreword (103 KB). Chapter 1: Nonholonomically constrained motions (816 KB). Contents: Nonholonomically Constrained Motions; Group Actions and Orbit Spaces; Symmetry and Reduction; Reconstruction, Relative Equilibria and Periodic Orbits; Carathéodory's Sleigh; Convex Rolling Rigid Body; The Rolling Disk. Readership: Graduate students in mathematics and mechanical engineering and researchers in dynamical systems.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View