Cover image for Modern Receiver Front-Ends : Systems, Circuits, and Integration.
Modern Receiver Front-Ends : Systems, Circuits, and Integration.
Title:
Modern Receiver Front-Ends : Systems, Circuits, and Integration.
Author:
Laskar, Joy.
ISBN:
9780471474869
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (237 pages)
Contents:
MODERN RECEIVER FRONT-ENDS -- CONTENTS -- Preface -- Acknowledgments -- 1 INTRODUCTION -- 1.1 Current State of the Art -- 2 RECEIVER SYSTEM DESIGN -- 2.1 Frequency Planning -- 2.1.1 Blockers -- 2.1.2 Spurs and Desensing -- 2.1.3 Transmitter Leakage -- 2.1.4 LO Leakage and Interference -- 2.1.5 Image -- 2.1.6 Half IF -- 2.2 Link Budget Analysis -- 2.2.1 Linearity -- 2.2.2 Noise -- 2.2.3 Signal-to-Noise Ratio -- 2.2.4 Receiver Gain -- 2.3 Propagation Effects -- 2.3.1 Path Loss -- 2.3.2 Multipath and Fading -- 2.3.3 Equalization -- 2.3.4 Diversity -- 2.3.5 Coding -- 2.4 Interface Planning -- 2.5 Conclusion -- 3 REVIEW OF RECEIVER ARCHITECTURES -- 3.1 Heterodyne Receivers -- 3.2 Image Reject Receivers -- 3.2.1 Hartley Architecture -- 3.2.2 Weaver Architecture -- 3.3 Zero IF Receivers -- 3.4 Low IF Receivers -- 3.5 Issues in Direct Conversion Receivers -- 3.5.1 Noise -- 3.5.2 LO Leakage and Radiation -- 3.5.3 Phase and Amplitude Imbalance -- 3.5.4 DC Offset -- 3.5.5 Intermodulations -- 3.6 Architecture Comparison and Trade-off -- 3.7 Conclusion -- 4 SILICON-BASED RECEIVER DESIGN -- 4.1 Receiver Architecture and Design -- 4.1.1 System Description and Calculations -- 4.1.2 Basics of OFDM -- 4.1.3 System Architectures -- 4.1.4 System Calculations -- 4.2 Circuit Design -- 4.2.1 SiGe BiCMOS Process Technology -- 4.2.2 LNA -- 4.2.3 Mixer -- 4.2.4 Frequency Divider -- 4.3 Receiver Design Steps -- 4.3.1 Design and Integration of Building Blocks -- 4.3.2 DC Conditions -- 4.3.3 Scattering Parameters -- 4.3.4 Small-Signal Performance -- 4.3.5 Transient Performance -- 4.3.6 Noise Performance -- 4.3.7 Linearity Performance -- 4.3.8 Parasitic Effects -- 4.3.9 Process Variation -- 4.3.10 50-W and Non-50-W Receivers -- 4.4 Layout Considerations -- 4.5 Characterization of Receiver Front-Ends -- 4.5.1 DC Test -- 4.5.2 Functionality Test -- 4.5.3 S-Parameter Test.

4.5.4 Conversion Gain Test -- 4.5.5 Linearity Test -- 4.5.6 Noise Figure Test -- 4.5.7 I/Q Imbalance -- 4.5.8 DC Offset -- 4.6 Measurement Results and Discussions -- 4.6.1 Close Examination of Noise Figure and I/Q Imbalance -- 4.6.2 Comments on I/Q Imbalance -- 4.7 Conclusion -- 5 SUBHARMONIC RECEIVER DESIGNS -- 5.1 Illustration of Subharmonic Techniques -- 5.2 Mixing Using Antisymmetric I-V Characteristics -- 5.3 Impact of Mismatch Effects -- 5.4 DC Offset Cancellation Mechanisms -- 5.4.1 Intrinsic DC Offset Cancellation -- 5.4.2 Extrinsic DC Offset Cancellation -- 5.5 Experimental Verification of DC Offset -- 5.6 Waveform Shaping Before Mixing -- 5.6.1 Theory and Analysis -- 5.6.2 Experimental Verification on GaAs MESFET APDP -- 5.6.3 Implementation in Silicon -- 5.7 Design Steps for APDP-Based Receivers -- 5.8 Architectural Illustration -- 5.9 Fully Monolithic Receiver Design Using Passive APDP Cores -- 5.9.1 Integrated Direct Conversion Receiver MMIC's -- 5.9.2 Receiver Blocks -- 5.9.3 Additional Receiver Blocks -- 5.10 Reconfigurable Multiband Subharmonic Front-Ends -- 5.11 Conclusion -- 6 ACTIVE SUBHARMONIC RECEIVER DESIGNS -- 6.1 Stacking of Switching Cores -- 6.1.1 Description and Principles -- 6.1.2 Subharmonic Receiver Architecture -- 6.2 Parallel Transistor Stacks -- 6.2.1 Active Mixer -- 6.2.2 Receiver Architecture -- 6.2.3 Extension to Passive Mixers -- 6.3 Extension to Higher-Order LO Subharmonics -- 6.4 Multiple Phase Signal Generation from Oscillators -- 6.5 Future Direction and Conclusion -- 7 DESIGN AND INTEGRATION OF PASSIVE COMPONENTS -- 7.1 System on Package (SoP) -- 7.1.1 Multilayer Bandpass Filter -- 7.1.2 Multilayer Balun Structure -- 7.1.3 Module-Integrable Antennaw -- 7.1.4 Fully Integrated SoP Module -- 7.2 On-Chip Inductors -- 7.2.1 Inductor Modeling -- 7.2.2 Inductor Parameters -- 7.2.3 Application in Circuits.

7.3 Capacitors -- 7.4 Differentially Driven Inductors -- 7.5 Transformers -- 7.5.1 Electrical Parameters -- 7.5.2 Physical Construction -- 7.5.3 Electrical Models -- 7.5.4 Frequency Response of Transformers -- 7.5.5 Step-Up/Step-Down Transformers and Circuit Applications -- 7.6 On-Chip Filters -- 7.6.1 Filters Using Bond Wires -- 7.6.2 Active Filters -- 7.7 On-Wafer Antennas -- 7.8 Wafer-Level Packaging -- 7.9 Conclusion -- 8 DESIGN FOR INTEGRATION -- 8.1 System Design Considerations -- 8.1.1 I/O Counts -- 8.1.2 Cross-Talk -- 8.1.3 Digital Circuitry Noise -- 8.2 IC Floor Plan -- 8.2.1 Signal Flow and Substrate Coupling -- 8.2.2 Grounding -- 8.2.3 Isolation -- 8.3 Packaging Considerations -- 8.3.1 Package Modeling -- 8.3.2 Bonding Limitation -- 8.4 Conclusion -- 9 FUTURE TRENDS -- 9.1 CMOS Cellphones -- 9.2 Multiband, Multimode Wireless Solutions -- 9.3 60 GHz Subsystems in Silicon! -- 9.4 Interchip Communications -- 9.5 Ultrawideband Communication Technology -- 9.6 Diversity Techniques -- 9.7 Conclusion -- Index.
Abstract:
Radio-frequency integrated circuit design is one of the most important fields in modern technology, playing a critical role in helping us reach the full promise of broadband wireless communications.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: