
Microwave Electronics : Measurement and Materials Characterization.
Title:
Microwave Electronics : Measurement and Materials Characterization.
Author:
Chen, L. F.
ISBN:
9780470020456
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (553 pages)
Contents:
Microwave Electronics -- Contents -- Preface -- 1 Electromagnetic Properties of Materials -- 1.1 Materials Research and Engineering at Microwave Frequencies -- 1.2 Physics for Electromagnetic Materials -- 1.2.1 Microscopic scale -- 1.2.2 Macroscopic scale -- 1.3 General Properties of Electromagnetic Materials -- 1.3.1 Dielectric materials -- 1.3.2 Semiconductors -- 1.3.3 Conductors -- 1.3.4 Magnetic materials -- 1.3.5 Metamaterials -- 1.3.6 Other descriptions of electromagnetic materials -- 1.4 Intrinsic Properties and Extrinsic Performances of Materials -- 1.4.1 Intrinsic properties -- 1.4.2 Extrinsic performances -- References -- 2 Microwave Theory and Techniques for Materials Characterization -- 2.1 Overview of the Microwave Methods for the Characterization of Electromagnetic Materials -- 2.1.1 Nonresonant methods -- 2.1.2 Resonant methods -- 2.2 Microwave Propagation -- 2.2.1 Transmission-line theory -- 2.2.2 Transmission Smith charts -- 2.2.3 Guided transmission lines -- 2.2.4 Surface-wave transmission lines -- 2.2.5 Free space -- 2.3 Microwave Resonance -- 2.3.1 Introduction -- 2.3.2 Coaxial resonators -- 2.3.3 Planar-circuit resonators -- 2.3.4 Waveguide resonators -- 2.3.5 Dielectric resonators -- 2.3.6 Open resonators -- 2.4 Microwave Network -- 2.4.1 Concept of microwave network -- 2.4.2 Impedance matrix and admittance matrix -- 2.4.3 Scattering parameters -- 2.4.4 Conversions between different network parameters -- 2.4.5 Basics of network analyzer -- 2.4.6 Measurement of reflection and transmission properties -- 2.4.7 Measurement of resonant properties -- References -- 3 Reflection Methods -- 3.1 Introduction -- 3.1.1 Open-circuited reflection -- 3.1.2 Short-circuited reflection -- 3.2 Coaxial-line Reflection Method -- 3.2.1 Open-ended apertures -- 3.2.2 Coaxial probes terminated into layered materials.
3.2.3 Coaxial-line-excited monopole probes -- 3.2.4 Coaxial lines open into circular waveguides -- 3.2.5 Shielded coaxial lines -- 3.2.6 Dielectric-filled cavity adapted to the end of a coaxial line -- 3.3 Free-space Reflection Method -- 3.3.1 Requirements for free-space measurements -- 3.3.2 Short-circuited reflection method -- 3.3.3 Movable metal-backing method -- 3.3.4 Bistatic reflection method -- 3.4 Measurement of Both Permittivity and Permeability Using Reflection Methods -- 3.4.1 Two-thickness method -- 3.4.2 Different-position method -- 3.4.3 Combination method -- 3.4.4 Different backing method -- 3.4.5 Frequency-variation method -- 3.4.6 Time-domain method -- 3.5 Surface Impedance Measurement -- 3.6 Near-field Scanning Probe -- References -- 4 Transmission/Reflection Methods -- 4.1 Theory for Transmission/reflection Methods -- 4.1.1 Working principle for transmission/reflection methods -- 4.1.2 Nicolson-Ross-Weir (NRW) algorithm -- 4.1.3 Precision model for permittivity determination -- 4.1.4 Effective parameter method -- 4.1.5 Nonlinear least-squares solution -- 4.2 Coaxial Air-line Method -- 4.2.1 Coaxial air lines with different diameters -- 4.2.2 Measurement uncertainties -- 4.2.3 Enlarged coaxial line -- 4.3 Hollow Metallic Waveguide Method -- 4.3.1 Waveguides with different working bands -- 4.3.2 Uncertainty analysis -- 4.3.3 Cylindrical rod in rectangular waveguide -- 4.4 Surface Waveguide Method -- 4.4.1 Circular dielectric waveguide -- 4.4.2 Rectangular dielectric waveguide -- 4.5 Free-space Method -- 4.5.1 Calculation algorithm -- 4.5.2 Free-space TRL calibration -- 4.5.3 Uncertainty analysis -- 4.5.4 High-temperature measurement -- 4.6 Modifications on Transmission/reflection Methods -- 4.6.1 Coaxial discontinuity -- 4.6.2 Cylindrical cavity between transmission lines -- 4.6.3 Dual-probe method -- 4.6.4 Dual-line probe method.
4.6.5 Antenna probe method -- 4.7 Transmission/reflection Methods for Complex Conductivity Measurement -- References -- 5 Resonator Methods -- 5.1 Introduction -- 5.2 Dielectric Resonator Methods -- 5.2.1 Courtney resonators -- 5.2.2 Cohn resonators -- 5.2.3 Circular-radial resonators -- 5.2.4 Sheet resonators -- 5.2.5 Dielectric resonators in closed metal shields -- 5.3 Coaxial Surface-wave Resonator Methods -- 5.3.1 Coaxial surface-wave resonators -- 5.3.2 Open coaxial surface-wave resonator -- 5.3.3 Closed coaxial surface-wave resonator -- 5.4 Split-resonator Method -- 5.4.1 Split-cylinder-cavity method -- 5.4.2 Split-coaxial-resonator method -- 5.4.3 Split-dielectric-resonator method -- 5.4.4 Open resonator method -- 5.5 Dielectric Resonator Methods for Surface-impedance Measurement -- 5.5.1 Measurement of surface resistance -- 5.5.2 Measurement of surface impedance -- References -- 6 Resonant-perturbation Methods -- 6.1 Resonant Perturbation -- 6.1.1 Basic theory -- 6.1.2 Cavity-shape perturbation -- 6.1.3 Material perturbation -- 6.1.4 Wall-impedance perturbation -- 6.2 Cavity-perturbation Method -- 6.2.1 Measurement of permittivity and permeability -- 6.2.2 Resonant properties of sample-loaded cavities -- 6.2.3 Modification of cavity-perturbation method -- 6.2.4 Extracavity-perturbation method -- 6.3 Dielectric Resonator Perturbation Method -- 6.4 Measurement of Surface Impedance -- 6.4.1 Surface resistance and surface reactance -- 6.4.2 Measurement of surface resistance -- 6.4.3 Measurement of surface reactance -- 6.5 Near-field Microwave Microscope -- 6.5.1 Basic working principle -- 6.5.2 Tip-coaxial resonator -- 6.5.3 Open-ended coaxial resonator -- 6.5.4 Metallic waveguide cavity -- 6.5.5 Dielectric resonator -- References -- 7 Planar-circuit Methods -- 7.1 Introduction -- 7.1.1 Nonresonant methods -- 7.1.2 Resonant methods.
7.2 Stripline Methods -- 7.2.1 Nonresonant methods -- 7.2.2 Resonant methods -- 7.3 Microstrip Methods -- 7.3.1 Nonresonant methods -- 7.3.2 Resonant methods -- 7.4 Coplanar-line Methods -- 7.4.1 Nonresonant methods -- 7.4.2 Resonant methods -- 7.5 Permeance Meters for Magnetic Thin Films -- 7.5.1 Working principle -- 7.5.2 Two-coil method -- 7.5.3 Single-coil method -- 7.5.4 Electrical impedance method -- 7.6 Planar Near-field Microwave Microscopes -- 7.6.1 Working principle -- 7.6.2 Electric and magnetic dipole probes -- 7.6.3 Probes made from different types of planar transmission lines -- References -- 8 Measurement of Permittivity and Permeability Tensors -- 8.1 Introduction -- 8.1.1 Anisotropic dielectric materials -- 8.1.2 Anisotropic magnetic materials -- 8.2 Measurement of Permittivity Tensors -- 8.2.1 Nonresonant methods -- 8.2.2 Resonator methods -- 8.2.3 Resonant-perturbation method -- 8.3 Measurement of Permeability Tensors -- 8.3.1 Nonresonant methods -- 8.3.2 Faraday rotation methods -- 8.3.3 Resonator methods -- 8.3.4 Resonant-perturbation methods -- 8.4 Measurement of Ferromagnetic Resonance -- 8.4.1 Origin of ferromagnetic resonance -- 8.4.2 Measurement principle -- 8.4.3 Cavity methods -- 8.4.4 Waveguide methods -- 8.4.5 Planar-circuit methods -- References -- 9 Measurement of Ferroelectric Materials -- 9.1 Introduction -- 9.1.1 Perovskite structure -- 9.1.2 Hysteresis curve -- 9.1.3 Temperature dependence -- 9.1.4 Electric field dependence -- 9.2 Nonresonant Methods -- 9.2.1 Reflection methods -- 9.2.2 Transmission/reflection method -- 9.3 Resonant Methods -- 9.3.1 Dielectric resonator method -- 9.3.2 Cavity-perturbation method -- 9.3.3 Near-field microwave microscope method -- 9.4 Planar-circuit Methods -- 9.4.1 Coplanar waveguide method -- 9.4.2 Coplanar resonator method -- 9.4.3 Capacitor method.
9.4.4 Influence of biasing schemes -- 9.5 Responding Time of Ferroelectric Thin Films -- 9.6 Nonlinear Behavior and Power-Handling Capability of Ferroelectric Films -- 9.6.1 Pulsed signal method -- 9.6.2 Intermodulation method -- References -- 10 Microwave Measurement of Chiral Materials -- 10.1 Introduction -- 10.2 Free-space Method -- 10.2.1 Sample preparation -- 10.2.2 Experimental procedure -- 10.2.3 Calibration -- 10.2.4 Time-domain measurement -- 10.2.5 Computation of ε, µ, and β of the chiral composite samples -- 10.2.6 Experimental results for chiral composites -- 10.3 Waveguide Method -- 10.3.1 Sample preparation -- 10.3.2 Experimental procedure -- 10.3.3 Computation of ε, µ, and ξ of the chiral composite samples -- 10.3.4 Experimental results for chiral composites -- 10.4 Concluding Remarks -- References -- 11 Measurement of Microwave Electrical Transport Properties -- 11.1 Hall Effect and Electrical Transport Properties of Materials -- 11.1.1 Direct current Hall effect -- 11.1.2 Alternate current Hall effect -- 11.1.3 Microwave Hall effect -- 11.2 Nonresonant Methods for the Measurement of Microwave Hall Effect -- 11.2.1 Faraday rotation -- 11.2.2 Transmission method -- 11.2.3 Reflection method -- 11.2.4 Turnstile-junction method -- 11.3 Resonant Methods for the Measurement of the Microwave Hall Effect -- 11.3.1 Coupling between two orthogonal resonant modes -- 11.3.2 Hall effect of materials in MHE cavity -- 11.3.3 Hall effect of endplate of MHE cavity -- 11.3.4 Dielectric MHE resonator -- 11.3.5 Planar MHE resonator -- 11.4 Microwave Electrical Transport Properties of Magnetic Materials -- 11.4.1 Ordinary and extraordinary Hall effect -- 11.4.2 Bimodal cavity method -- 11.4.3 Bimodal dielectric probe method -- References -- 12 Measurement of Dielectric Properties of Materials at High Temperatures -- 12.1 Introduction.
12.1.1 Dielectric properties of materials at high temperatures.
Abstract:
The development of high speed, high frequency circuits and systems requires an understanding of the properties of materials functioning at the microwave level. This comprehensive reference sets out to address this requirement by providing guidance on the development of suitable measurement methodologies tailored for a variety of materials and application systems. Bringing together coverage of a broad range of techniques in one publication for the first time, this book: Provides a comprehensive introduction to microwave theory and microwave measurement techniques. Examines every aspect of microwave material properties, circuit design and applications. Presents materials property characterisation methods along with a discussion of the underlying theory. Outlines the importance of microwave absorbers in the reduction in noise levels in microwave circuits and their importance within defence industry applications. Relates each measurement technique to its application across the fields of microwave engineering, high-speed electronics, remote sensing and the physical sciences. This book will appeal to practising engineers and technicians working in the areas of RF, microwaves, communications, solid-state devices and radar. Senior students, researchers in microwave engineering and microelectronics and material scientists will also find this book a very useful reference.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View