Cover image for High-Speed Heterostructure Devices : From Device Concepts to Circuit Modeling.
High-Speed Heterostructure Devices : From Device Concepts to Circuit Modeling.
Title:
High-Speed Heterostructure Devices : From Device Concepts to Circuit Modeling.
Author:
Roblin, Patrick.
ISBN:
9781139146456
Personal Author:
Physical Description:
1 online resource (726 pages)
Contents:
Cover -- Half-title -- Title -- Copyright -- Dedication -- Contents -- Preface -- Required background -- Outline for the reader -- Recommendations for the instructor -- Acknowledgements -- Acknowledgements by Patrick Roblin -- Acknowledgements by Hans Rohdin -- Joint acknowledgements -- List of abbreviations -- Introduction -- Ever shrinking high-speed devices -- Quantum effects -- Quantum devices -- From quantum transport to Boltzmann equation -- Ballistic transport versus drift-diffusion transport -- Importance of a microscopic study -- 1 Heterostructure materials -- 1.1 Introduction -- 1.2 MBE technology -- 1.2.1 Lattice-matched systems -- 1.2.2 Pseudomorphic materials -- 1.2.3 The materials game and bandgap engineering -- 1.2.4 Limitations and applications of modern growth techniques -- 1.3 Crystal and reciprocal lattices -- 1.3.1 Crystals and lattices -- 1.3.2 The reciprocal lattice -- 1.3.3 Application to band structures -- 1.4 Conclusion -- 1.5 Bibliography -- 1.5.1 Recommended reading -- 1.5.2 References -- 1.6 Problems -- 2 Semiclassical theory of heterostructures -- 2.1 Introduction -- 2.2 Spatially-varying semiconductors -- 2.2.1 Semiconductor alloys -- 2.2.2 Modulation doping -- 2.3 The Anderson band-diagram model -- 2.4 The abrupt heterojunction case -- 2.5 Drift-diffusion transport model for heterostructures -- 2.6 I-V characteristics of p-n heterojunctions -- 2.7 The thermionic model of heterojunctions -- 2.8 Ballistic launching -- 2.9 The HBT -- 2.10 Conclusion -- Appendix: Semiconductor parameter tables -- 2.11 Bibliography -- 2.11.1 Recommended reading -- 2.11.2 References -- 2.12 Problems -- 3 Quantum theory of heterostructures -- 3.1 Introduction -- 3.2 Band structures, Bloch functions and Wannier functions -- 3.2.1 The Schrödinger equation -- 3.2.2 Electron in a periodic potential -- 3.2.3 Wannier functions.

Proof of translation invariance -- The Wannier picture -- Eigenstate solution -- The tight-binding band -- The flat-band case -- 3.2.4 Three-dimensional crystal -- 3.3 Spatially-varying band -- 3.3.1 Heterojunction case (tight-binding approximation) -- 3.3.2 Definition of the electron particle current (flux) -- Conservation equation -- Total particle current definition -- Flat-band case -- 3.3.3 Matching theory -- 3.3.4 Three-dimensional effects -- 3.4 Multi-band tridiagonal Wannier picture -- 3.4.1 Multi-band tridiagonal Wannier system -- 3.4.2 Effective-mass wave-matching for a two-band Wannier system -- 3.4.3 Comparison with a full-band model -- 3.5 Multi-band density of states -- 3.6 Conclusion -- 3.7 Bibliography -- 3.7.1 Recommended reading -- 3.7.2 References -- 3.8 Problems -- 4 Quantum heterostructure devices -- 4.1 Introduction -- 4.2 The accelerated band electron -- 4.2.1 Stark states and the Wannier ladder -- Eigenstate solutions -- Zener resonant tunneling -- 4.2.2 Time-dependent solutions and the Houston state -- 4.2.3 The Bloch oscillator -- 4.2.4 Coherent and squeezed Zener oscillations -- 4.3 Quantum wells -- 4.3.1 Rectangular quantum wells -- 4.3.2 Quantum well induced by an electric field -- 4.3.3 Quantum wells of arbitrary shapes -- 4.3.4 Full-band structure effects -- 4.3.5 2DEG -- Density of states in k space -- Density of states in E space -- Fermi-Dirac statistics in a 2DEG -- 4.4 Resonant tunneling -- 4.4.1 Double-barrier system -- 4.4.2 Tunneling current and resonant tunneling -- 4.4.3 Charge distribution inside the well -- 4.4.4 Exchange correlation -- 4.4.5 Scattering induced broadening -- 4.4.6 Full-band structure effects -- 4.4.7 High-frequency and high-speed response -- 4.4.8 Resonant interband tunneling diodes (RITDs) -- 4.5 Superlattice -- 4.5.1 Periodic superlattices -- 4.5.2 Random superlattice.

4.5.3 Quasi-crystals and Fibonacci superlattices -- 4.6 Conclusion -- 4.7 Bibliography -- 4.7.1 Recommended reading -- 4.7.2 References -- 4.8 Problems -- 5 Scattering processes in heterostructures -- 5.1 Introduction -- 5.2 Phonons and phonon scattering -- 5.2.1 Phonons -- What is a phonon? -- 5.2.2 Spontaneous and stimulated emissions -- 5.2.3 Semiclassical phonon model -- 5.3 Polar scattering by optical phonons -- 5.4 Deformation potential scattering by acoustic phonons -- 5.5 Intervalley scattering by LO phonons -- 5.6 Interface roughness scattering -- 5.7 Alloy scattering -- 5.8 Electron-electron scattering -- 5.9 Conclusion -- 5.10 Bibliography -- 5.10.1 Recommended reading -- 5.10.2 References -- 5.11 Problems -- 6 Scattering-assisted tunneling -- 6.1 Introduction -- 6.2 Importance of three-dimensional scattering -- 6.3 Scattering-assisted tunneling theory -- 6.3.1 Semiclassical scattering picture -- 6.3.2 Matrix elements for the heterostructure Hamiltonian -- 6.3.3 Matrix elements for the interaction Hamiltonian -- 6.3.4 Envelope equations for sequential scattering -- 6.4 Transmission coefficient for scattering-assisted tunneling -- 6.5 Self-energy -- 6.6 The MSS algorithm -- 6.7 Scattering-parameter representation -- 6.8 Detailed balance and Pauli exclusion in MSS -- 6.9 Coupling functions for various scattering processes -- 6.10 Results for resonant tunneling structures -- 6.11 Conclusion -- 6.12 Bibliography -- 6.12.1 Recommended reading -- 6.12.2 References -- 6.13 Problems -- 7 Frequency response of quantum devices from DC to infrared -- 7.1 Introduction -- 7.2 Analytic solution for a uniform time-dependent potential -- 7.3 Radiation coupling with an external modulated electric field -- 7.4 Time-dependent tunneling theory -- 7.5 Small-signal response without self-consistent potential -- 7.6 Self-consistent solution.

7.7 RTD conductances and capacitances -- 7.8 High-frequency response of the RTD -- 7.9 Microwave measurement of the C-V characteristics -- 7.10 DC bias instabilities -- 7.11 Infrared response of quantum devices -- 7.11.1 Modeling the infrared wave-guide -- 7.11.2 Coupling of quantum transport with infrared radiation -- 7.11.3 Optical absorption/emission coefficient -- Simulation verification -- 7.11.4 Quantum cascade laser -- 7.12 Conclusion -- 7.13 Bibliography -- 8 Charge control of the two-dimensional electron gas -- 8.1 Introduction -- 8.2 2DEG population as a function of the Fermi energy -- Approximate treatment -- 8.3 Equilibrium population of the 2DEG -- 8.4 Charge control of the 2DEG with a Schottky junction -- 8.5 C-V characteristics of the MODFET capacitor -- 8.6 I-V modeling of the Schottky junction -- 8.7 Conclusion -- 8.8 Bibliography -- 8.9 Problems -- 9 High electric field transport -- 9.1 Introduction -- 9.2 The Boltzmann equation -- 9.3 Electron transport in small electric fields -- 9.3.1 Uniform semiconductor case -- 9.3.2 Non-uniform semiconductor case -- 9.4 Electron transport in a large electric field -- 9.4.1 Uniform semiconductor case -- 9.4.2 Non-uniform semiconductor case -- 9.5 High-field transport: two-valley model -- 9.6 Negative differential mobility and the Gunn effect -- 9.7 Transient velocity overshoot in a time-varying field -- 9.8 Stationary velocity overshoot in short devices -- 9.9 Conclusion -- 9.10 Bibliography -- 9.10.1 Recommended reading -- 9.10.2 References -- 9.11 Problems -- 10 I-V model of the MODFET -- 10.1 Introduction -- 10.2 Long-and short-channel MODFETs -- 10.3 Saturation and two-dimensional effects in FETs -- 10.3.1 The Grebene-Ghandhi model -- 10.3.2 Channel opening: MOSFET saturation model -- 10.4 The extrinsic MODFET -- 10.5 Conclusion -- 10.6 Bibliography -- 10.6.1 Recommended reading.

10.6.2 References -- 10.7 Problems -- 11 Small-and large-signal AC models for the long-channel MODFET -- 11.1 Introduction -- 11.1.1 fT and fmax figures of merit -- 11.1.2 MAG and MSG -- 11.1.3 Unilateral power gain of the wave-equation model -- 11.1.4 On the ordering of fT and fmax -- 11.2 The MOSFET wave-equation (long-channel case) -- 11.2.1 The large-signal MOSFET wave-equation -- 11.2.2 Exact small-signal solution of the MOSFET wave-equation -- 11.2.3 Frequency power series expansions of the y parameters -- 11.2.4 Dimensionless representation of the y parameters -- 11.2.5 First order equivalent circuit I -- 11.2.6 Range of validity of the RC small-signal equivalent circuit I -- 11.2.7 Alternative equivalent circuits for the intrinsic MODFET/MOSFET -- 11.3 Large-signal model of the long-channel MODFET/MOSFET -- 11.3.1 Charge conservation -- 11.3.2 Charge conservation in circuit simulators -- 11.4 Parasitics, extrinsic MODFET and parameter extraction -- 11.5 Conclusion -- 11.6 Bibliography -- 11.6.1 Recommended reading -- 11.6.2 References -- 11.7 Problems -- 12 Small-and large-signal AC models for the short-channel MODFET -- 12.1 Introduction -- 12.2 Small-signal model for the short-channel MOSFET -- 12.2.1 The velocity-saturated MOSFET wave-equation -- 12.2.2 Exact solution of the velocity-saturated MOSFET wave-equation -- 12.2.3 Equivalent circuit of the velocity-saturated MOSFET wave-equation -- 12.2.4 High-frequency performance of the short-channel MODFET -- 12.2.5 Alternate equivalent circuit for the short-channel MODFET -- 12.3 Large-signal model for the short-channel MOSFET -- 12.3.1 First-order non-quasi-static approximation -- 12.3.2 Small-signal equivalent circuit for the D" internal node -- 12.3.3 Large-signal model -- 12.3.4 Charge-based representation -- 12.3.5 Charge conservation -- 12.3.6 Model topology -- 12.4 Conclusion.

12.5 Bibliography.
Abstract:
A timely and comprehensive text on silicon heterostructures, covering physics, modeling techniques and device applications.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Added Author:
Electronic Access:
Click to View
Holds: Copies: