
Electronic Materials Science.
Title:
Electronic Materials Science.
Author:
Irene, Eugene A.
ISBN:
9780471711636
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (322 pages)
Contents:
ELECTRONIC MATERIALS SCIENCE -- CONTENTS -- Preface -- 1 Introduction to Electronic Materials Science -- 1.1 Introduction -- 1.2 Structure and Diffraction -- 1.3 Defects -- 1.4 Diffusion -- 1.5 Phase Equilibria -- 1.6 Mechanical Properties -- 1.7 Electronic Structure -- 1.8 Electronic Properties and Devices -- 1.9 Electronic Materials Science -- 2 Structure of Solids -- 2.1 Introduction -- 2.2 Order -- 2.3 The Lattice -- 2.4 Crystal Structure -- 2.5 Notation -- 2.5.1 Naming Planes -- 2.5.2 Lattice Directions -- 2.6 Lattice Geometry -- 2.6.1 Planar Spacing Formulas -- 2.6.2 Close Packing -- 2.7 The Wigner-Seitz Cell -- 2.8 Crystal Structures -- 2.8.1 Structures for Elements -- 2.8.2 Structures for Compounds -- 2.8.3 Solid Solutions -- Related Reading -- Exercises -- 3 Diffraction -- 3.1 Introduction -- 3.2 Phase Difference and Bragg's Law -- 3.3 The Scattering Problem -- 3.3.1 Coherent Scattering from an Electron -- 3.3.2 Coherent Scattering from an Atom -- 3.3.3 Coherent Scattering from a Unit Cell -- 3.3.4 Structure Factor Calculations -- 3.4 Reciprocal Space, RESP -- 3.4.1 Why Reciprocal Space? -- 3.4.2 Definition of RESP -- 3.4.3 Definition of Reciprocal Lattice Vector -- 3.4.4 The Ewald Construction -- 3.5 Diffraction Techniques -- 3.5.1 Rotating Crystal Method -- 3.5.2 Powder Method -- 3.5.3 Laue Method -- 3.6 Wave Vector Representation -- Related Reading -- Exercises -- 4 Defects in Solids -- 4.1 Introduction -- 4.2 Why Do Defects Form? -- 4.2.1 Review of Some Thermodynamics Ideas -- 4.3 Point Defects -- 4.4 The Statistics of Point Defects -- 4.5 Line Defects-Dislocations -- 4.5.1 Edge Dislocations -- 4.5.2 Screw Dislocations -- 4.5.3 Burger's Vector and the Burger Circuit -- 4.5.4 Dislocation Motion -- 4.6 Planar Defects -- 4.6.1 Grain Boundaries -- 4.6.2 Twin Boundaries -- 4.7 Three-Dimensional Defects -- Related Reading -- Exercises.
5 Diffusion in Solids -- 5.1 Introduction to Diffusion Equations -- 5.2 Atomistic Theory of Diffusion: Fick's Laws and a Theory for the Diffussion Construct D -- 5.3 Random Walk Problem -- 5.3.1 Random Walk Calculations -- 5.3.2 Relation of D to Random Walk -- 5.3.3 Self-Diffusion Vacancy Mechanism in a FCC Crystal -- 5.3.4 Activation Energy for Diffusion -- 5.4 Other Mass Transport Mechanisms -- 5.4.1 Permeability versus Diffusion -- 5.4.2 Convection versus Diffusion -- 5.5 Mathematics of Diffusion -- 5.5.1 Steady State Diffusion-Fick's First Law -- 5.5.2 Non-Steady State Diffusion-Fick's Second Law -- Related Reading -- Exercises -- 6 Phase Equilibria -- 6.1 Introduction -- 6.2 The Gibbs Phase Rule -- 6.2.1 Definitions -- 6.2.2 Equilibrium Among Phases-The Phase Rule -- 6.2.3 Applications of the Phase Rule -- 6.2.4 Construction of Phase Diagrams: Theory and Experiment -- 6.2.5 The Tie Line Principle -- 6.2.6 The Lever Rule -- 6.2.7 Examples of Phase Equilibria -- 6.3 Nucleation and Growth of Phases -- 6.3.1 Thermodynamics of Phase Transformations -- 6.3.2 Nucleation -- Related Reading -- Exercises -- 7 Mechanical Properties of Solids-Elasticity -- 7.1 Introduction -- 7.2 Elasticity Relationships -- 7.2.1 True versus Engineering Strain -- 7.2.2 Nature of Elasticity and Young's Modulus -- 7.3 An Analysis of Stress by the Equation of Motion -- 7.4 Hooke's Law for Pure Dilatation and Pure Shear -- 7.5 Poisson's Ratio -- 7.6 Relationships Among E, e, and v -- 7.7 Relationships Among E, G, and n -- 7.8 Resolving the Normal Forces -- Related Reading -- Exercises -- 8 Mechanical Properties of Solids-Plasticity -- 8.1 Introduction -- 8.2 Plasticity Observations -- 8.3 Role of Dislocations -- 8.4 Deformation of Noncrystalline Materials -- 8.4.1 Thermal Behavior of Amorphous Solids -- 8.4.2 Time-Dependent Deformation of Amorphous Materials.
8.4.3 Models for Network Solids -- 8.4.4 Elastomers -- Related Reading -- Exercises -- 9 Electronic Structure of Solids -- 9.1 Introduction -- 9.2 Waves, Electrons, and the Wave Function -- 9.2.1 Representation of Waves -- 9.2.2 Matter Waves -- 9.2.3 Superposition -- 9.2.4 Electron Waves -- 9.3 Quantum Mechanics -- 9.3.1 Normalization -- 9.3.2 Dispersion of Electron Waves and the SE -- 9.3.3 Classical and QM Wave Equations -- 9.3.4 Solutions to the SE -- 9.4 Electron Energy Band Representations -- 9.4.1 Parallel Band Picture -- 9.4.2 k Space Representations -- 9.4.3 Brillouin Zones -- 9.5 Real Energy Band Structures -- 9.6 Other Aspects of Electron Energy Band Structure -- Related Reading -- Exercises -- 10 Electronic Properties of Materials -- 10.1 Introduction -- 10.2 Occupation of Electronic States -- 10.2.1 Density of States Function, DOS -- 10.2.2 The Fermi-Dirac Distribution Function -- 10.2.3 Occupancy of Electronic States -- 10.3 Position of the Fermi Energy -- 10.4 Electronic Properties of Metals: Conduction and Superconductivity -- 10.4.1 Free Electron Theory for Electrical Conduction -- 10.4.2 Quantum Theory of Electronic Conduction -- 10.4.3 Superconductivity -- 10.5 Semiconductors -- 10.5.1 Intrinsic Semiconductors -- 10.5.2 Extrinsic Semiconductors -- 10.5.3 Semiconductor Measurements -- 10.6 Electrical Behavior of Organic Materials -- Related Reading -- Exercises -- 11 Junctions and Devices and the Nanoscale -- 11.1 Introduction -- 11.2 Junctions -- 11.2.1 Metal-Metal Junctions -- 11.2.2 Metal-Semiconductor Junctions -- 11.2.3 Semiconductor-Semiconductor PN Junctions -- 11.3 Selected Devices -- 11.3.1 Passive Devices -- 11.3.2 Active Devices -- 11.4 Nanostructures and Nanodevices -- 11.4.1 Heterojunction Nanostructures -- 11.4.2 2-D and 3-D Nanostructures -- Related Reading -- Exercises -- Index.
Abstract:
EUGENE A. IRENE is Professor of Physical Chemistry at the University of North Carolina, Chapel Hill. He received his PhD in solid-state and physical chemistry from Rensselaer Polytechnic Institute in 1972 and worked for IBM for ten years in the Thomas J. Watson Research Center.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View