
Function Field Arithmetic.
Title:
Function Field Arithmetic.
Author:
Thakur, Dinesh S.
ISBN:
9789812562388
Personal Author:
Physical Description:
1 online resource (405 pages)
Contents:
Function Field Arithmetic -- Contents -- 1. Number fields and Function fields -- 1.1 Global fields: Basic analogies and contrasts -- 1.2 Genus and Riemann-Roch theorem -- 1.3 Zeta function and class group -- 1.4 Class field theory and Galois group -- Class field theory in terms of ideal (or divisor) groups: -- Class field theory in terms of idele groups: -- Class field theory via generalized Jacobians: -- Class field theory via cohomological approach: -- The Galois group: -- 2. Drinfeld modules -- 2.1 Carlitz module and related arithmetical objects -- 2.2 Drinfeld modules: Basic definitions -- 2.3 Torsion points -- 2.4 Analytic theory -- 2.5 Explicit calculations for Carlitz module -- 2.6 Reductions -- 2.7 Endomorphisms -- 2.8 Field of definition -- 2.9 Points on Drinfeld modules -- 2.10 Adjoints and duality -- 2.11 Useful tools in non-archimedean or finite field setting -- (a) Properties of k{} -- (b) Moore determinant -- (c) q-resultants -- (d) Non- archimedean calculus -- (e) Dwork's trace formula -- 3. Explicit class field theory -- 3.1 Torsion of rank one Drinfeld modules -- 3.2 Sign normalization of the top coefficient -- 3.3 Normalizing Field as a class field -- 3.4 Smallest field of definition as a class field -- 3.5 Ring of definition -- 3.6 Cyclotomic fields -- 3.7 Moduli approach -- 3.8 Summary -- 3.9 Maximal abelian extension -- 3.10 Cyclotomic theory of Fq[t] -- 3.11 Cyclotomic units and conjectures of Brumer and Stark -- 3.12 Some contrasts and open questions -- 4. Gauss sums and Gamma functions -- 4.1 Gauss and Jacobi sums: Definitions -- 4.2 Gauss and Jacobi sums: Fq[t] case -- 4.3 Gauss and Jacobi sums: General A -- 4.4 Sign of Gauss sums for Fq[t] -- 4.5 Arthimetic Factorial and Gamma: Definitions -- (a) Fq[t] case -- (b) General A -- 4.6 Functional equations in arithmetic case -- 4.7 Special values for arthimetic.
(a) Periods: Fq[t] case -- (b) Periods: General A -- 4.8 Special values of arithmetic -- (a) Fq[t] case: Analog of Gross-Koblitz -- (b) General A -- 4.9 Geometric Factorial and Gamma: Definitions -- 4.10 Functional equations in geometric case -- Reflection formula for II: -- Multiplication formula for II: -- Multiplication formula for II: -- Reflection formula for II: -- 4.11 Special values of geometric and: Fq[t] case -- 4.12 Comparisons and uniform framework -- 4.13 More analogies for Fq[t]: Divisibilities -- 4.14 Binomial coefficients -- (a) Binomial coefficients as nice basis -- (b) Difference and differentiation operators -- 4.15 Relations between the two notions of binomials -- 4.16 Bernoulli numbers and polynomials -- 4.17 Note on finite differences and q-analogs -- 5. Zeta functions -- 5.1 Zeta values at integers: Definitions -- 5.2 Values at positive integers -- 5.3 Values at non-positive integers -- 5.4 Mutiplicities of trivial zeros -- 5.5 Zeta function interpolation on character space -- (a) adic interpolation -- (b) adic interpolation -- 5.6 Power sums -- 5.7 Zeta measure -- 5.8 Zero distribution -- 5.9 Low values and multi-logarithms -- 5.10 Multizeta values -- (a) Complex valued multizeta -- (b) Finite characteristic variants -- (c) Interpolations -- 5.11 Analytic properties of zeta and Fredholm determinant -- 5.12 Note on classical interpolations -- 6. Higher rank theory -- 6.1 Elliptic modules -- 6.2 Modular forms -- 6.3 Galois representations -- 6.4 DeRham Cohomology -- (a) Elliptic curves case: Motivation -- (b) Drinfeld modules case -- 6.5 Hypergeometric functions -- (a) The first analog -- (b) The second analog -- 7. Higher dimensions and geometric tools -- 7.1 t-modules and t-motives -- 7.2 Torsion -- 7.3 Purity -- 7.4 Exponential, period lattice and uniformizability -- 7.5 Cohomology realizations.
7.6 Example: Carlitz-Tate twist Cn -- 7.7 Drinfeld dictionary in the simplest case -- 7.8 Krichever/Drinfeld dictionary in more generality -- 8. Applications to Gauss sums, Gamma and Zeta values -- 8.1 Cn and (n) -- 8.2 Shtuka and Jacobi sums -- (a) Gauss sums and Theta divisor -- (b) Examples and applications -- (c) The case g = d = 1 -- 8.3 Another Gamma function -- (a) Analog of Gross-Koblitz -- (b) Interpolation at for new Gamma -- 8.4 Fermat motives and solitons -- 8.5 Another approach to solitons -- 8.6 Analog of Gross-Koblitz for Geometric Gamma: Fq[t] case -- 8.7 What is known or expected in general case? -- 8.8 Gamma values to Periods connection via solitons: Sketch -- 8.9 Log-algebraicity, Cyclotomic module and Vandiver conjecture -- 8.10 Explicit Log-Algebraicity formulas -- 9. Diophantine approximation -- 9.1 Approximation exponents -- 9.2 Good approximations: Continued fractions -- 9.3 Range of exponents : Frobenius -- 9.4 Range of exponents: Differentiation -- 9.5 Connection with deformation theory -- (a) Height inequalities for algebraic points -- (b) Exponent hierarchy -- (c) Approximation by algebraic functions -- 9.6 Note on connection with Diophantine equations -- 10. Transcendence results -- 10.1 Approximation techniques and irrationality -- 10.2 Transcendence results on Drinfeld modules -- 10.3 Application to Zeta and Gamma values -- 10.4 Transcendence results in higher dimensions -- 10.5 Application to Zeta and Gamma values -- 11. Automata and algebraicity: Applications -- 11.1 Automata and algebraicity -- 11.2 Some useful automata tools -- 11.3 Applications to transcendence of gamma values and monomials -- 11.4 Applications to transcendence: periods and modular functions -- 11.5 Classifying finite characteristic numbers -- 11.6 Computational classes and basic tools -- 11.7 Algebraic properties of computational classes.
11.8 Applications to refined transcendence -- Note on the Notation -- Bibliography.
Abstract:
This book provides an exposition of function field arithmetic withemphasis on recent developments concerning Drinfeld modules, thearithmetic of special values of transcendental functions (such as zetaand gamma functions and their interpolations), diophantineapproximation and related interesting open problems.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View