
Differential Geometry In Array Processing.
Title:
Differential Geometry In Array Processing.
Author:
Manikas, Athanassios.
ISBN:
9781860946028
Personal Author:
Physical Description:
1 online resource (231 pages)
Contents:
Preface -- Contents -- 1. Introduction -- 1.1 Nomenclature -- 1.2 Main Abbreviations -- 1.3 Array of Sensors - Environment -- 1.4 Pictorial Notation -- 1.4.1 Spaces/Subspaces -- 1.4.2 Projection Operator -- 1.5 Principal Symbols -- 1.6 Modelling the Array Signal-Vector and Array Manifold -- 1.7 Significance of Array Manifolds -- 1.8 An Outline of the Book -- 2. Differential Geometry of Array Manifold Curves -- 2.1 Manifold Curve Representation - Basic Concepts -- 2.2 Curvatures and Coordinate Vectors in CN -- 2.2.1 Number of Curvatures and Symmetricity in Linear Arrays -- 2.2.2 "Moving Frame" and Frame Matrix -- 2.2.3 Frame Matrix and Curvatures -- 2.2.4 Narrow and Wide Sense Orthogonality -- 2.3 "Hyperhelical" Manifold Curves -- 2.3.1 Coordinate Vectors and Array Symmetricity -- 2.3.2 Evaluating the Curvatures of Uniform Linear Array Manifolds -- 2.4 The Manifold Length and Number of Windings (or Half Windings) -- 2.5 The Concept of "Inclination" of the Manifold -- 2.6 The Manifold-Radii Vector -- 2.7 Appendices -- 2.7.1 Proof of Eq. (2.24) -- 2.7.2 Proof of Theorem 2.1 -- 3. Differential Geometry of Array Manifold Surfaces -- 3.1 Manifold Metric -- 3.2 The First Fundamental Form -- 3.3 Christoffel Symbol Matrices -- 3.4 Intrinsic Geometry of a Surface -- 3.4.1 Gaussian Curvature -- 3.4.2 Curves on a Manifold Surface: Geodesic Curvature -- 3.4.2.1 Arc Length -- 3.4.2.2 The Concept of Geodicity -- 3.4.3 Geodesic Curvature -- 3.5 The Concept of "Development" -- 3.6 Summary -- 3.7 Appendices -- 3.7.1 Proof of Eq. (3.36) - Geodesic Curvature -- 4. Non-Linear Arrays: (θ, φ)-Parametrization of Array Manifold Surfaces -- 4.1 Manifold Metric and Christoffel Symbols -- 4.2 3D-grid Arrays of Omnidirectional Sensors -- 4.3 Planar Arrays of Omnidirectional Sensors -- 4.4 Families of θ- and φ-curves on theManifold Surface.
4.5 "Development" of Non-linear Array Geometries -- 4.6 Summary -- 4.7 Appendices -- 4.7.1 Proof that the Gaussian Curvature of an Omni-directional Sensor Planar Array Manifold is Zero -- 4.7.2 Proof of the Expression of det G for Planar Arrays in Table 4.2 -- 4.7.3 Proof of "Development" Theorem 4.6 -- 5. Non-Linear Arrays: (α, β)-Parametrization -- 5.1 Mapping from the (θ, φ) Parameter Space to Cone-Angle Parameter Space -- 5.2 Manifold Vector in Terms of a Cone-Angle -- 5.3 Intrinsic Geometry of the Array Manifold Based on Cone-Angle Parametrization -- 5.4 Defining the Families of - and -parameter Curves -- 5.5 Properties of α- and β-parameter Curves -- 5.5.1 Geodecity -- 5.5.2 Length of Parameter Curves -- 5.5.3 Shape of α- and β-curves -- 5.6 "Development" of α- and β-parameter Curves -- 6. Array Ambiguities -- 6.1 Classification of Ambiguities -- 6.2 The Concept of an Ambiguous Generator Set -- 6.3 Partitioning the Array Manifold Curve into Segments of Equal Length -- 6.3.1 Calculation of Ambiguous Generator Sets of Linear (or ELA) Array Geometries -- 6.4 Representative Examples -- 6.5 Handling Ambiguities in Planar Arrays -- 6.5.1 Ambiguities on φ-curves -- 6.5.2 Ambiguities on α-curves/β-curves -- 6.5.3 Some Comments on Planar Arrays -- 6.5.4 Ambiguous Generator Lines -- 6.6 Ambiguities and Manifold Length -- 6.7 Appendices -- 6.7.1 Proof of Theorem 6.1 -- 7. More on Ambiguities: Symmetrical Arrays -- 7.1 Symmetric Linear Arrays and det(AN(s)) -- 7.2 Characteristic Points on the Array Manifold -- 7.3 Array Symmetricity and Non-Uniform Partitions of Hyperhelices -- 7.4 Ambiguities of Rank-(N - 1) and Array Pattern -- 7.5 Planar Arrays and 'Non-Uniform' Ambiguities -- 7.6 Conclusions -- 8. Array Bounds -- 8.1 Circular Approximation of an Array Manifold -- 8.2 Accuracy and the Cramer Rao Lower Bound.
8.2.1 Single Emitter CRB in Terms of Manifold's Differential Geometry -- 8.2.2 Two Emitter CRB in Terms of Principal Curvature -- 8.2.2.1 Elevation Dependence of Two Emitters' CRB -- 8.2.2.2 Azimuth Dependence of Two Emitters' CRB -- 8.3 "Detection" and "Resolution" Thresholds -- 8.3.1 Estimating the Detection Threshold -- 8.3.2 Estimating the Resolution Threshold -- 8.4 Modelling of the Uncertainty Sphere -- 8.5 Thresholds in Terms of (SNR × L) -- 8.6 Comments -- 8.6.1 Schmidt's Definition of Resolution -- 8.6.2 CRB at the Resolution Threshold -- 8.6.3 Directional Arrays -- 8.7 Array Capabilities Based on α- and β-curves -- 8.8 Summary -- 8.9 Appendices -- 8.9.1 Radius of Circular Approximation -- 8.9.2 "Circular" and "Y" Arrays - Sensor Locations -- 8.9.3 Proof: CRB of Two Sources in Terms of κ1 -- Bibliography -- Index.
Abstract:
In view of the significance of the array manifold in array processingand array communications, the role of differential geometry as ananalytical tool cannot be overemphasized. Differential geometry ismainly confined to the investigation of the geometric properties ofmanifolds in three-dimensional Euclidean space R3 and inreal spaces of higher dimension.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View