
Numerical Solution Of Systems Of Polynomials Arising In Engineering And Science.
Title:
Numerical Solution Of Systems Of Polynomials Arising In Engineering And Science.
Author:
Sommese, Andrew J.
ISBN:
9789812567727
Personal Author:
Physical Description:
1 online resource (425 pages)
Contents:
Preface -- Contents -- Conventions -- PART I Background -- Chapter 1 Polynomial Systems -- 1.1 Polynomials in One Variable -- 1.2 Multivariate Polynomial Systems -- 1.3 Trigonometric Equations as Polynomials -- 1.4 Solution Sets -- 1.5 Solution by Continuation -- 1.6 Overview -- 1.7 Exercises -- Chapter 2 Homotopy Continuation -- 2.1 Continuation for Polynomials in One Variable -- 2.2 Complex Versus Real Solutions -- 2.3 Path Tracking -- 2.4 Exercises -- Chapter 3 Projective Spaces -- 3.1 Motivation: Quadratic Equations -- 3.2 Definition of Projective Space -- 3.3 The Projective Line P1 -- 3.4 The Projective Plane P2 -- 3.5 Projective Algebraic Sets -- 3.6 Multiprojective Space -- 3.7 Tracking Solutions to Infinity -- 3.8 Exercises -- Chapter 4 Genericity and Probability One -- 4.1 Generic Points -- 4.2 Example: Generic Lines -- 4.3 Probabilistic Null Test -- 4.4 Algebraic Probability One -- 4.5 Numerical Certainty -- 4.6 Other Approaches to Genericity -- 4.7 Final Remarks -- 4.8 Exercises -- Chapter 5 Polynomials of One Variable -- 5.1 Some Algebraic Facts about Polynomials of One Complex Variable -- 5.2 Some Analytic Facts about Polynomials of One Complex Variable (Optional) -- 5.3 Some Numerical Aspects of Polynomials of One Variable -- 5.4 Exercises -- Chapter 6 Other Methods -- 6.1 Exclusion Methods -- 6.2 Elimination Methods -- 6.3 Gröbner Methods -- 6.4 More Methods -- 6.5 Floating Point vs. Exact Arithmetic -- 6.6 Discussion -- 6.7 Exercises -- PART II Isolated Solutions -- Chapter 7 Coefficient-Parameter Homotopy -- 7.1 Coefficient-Parameter Theory -- 7.2 Parameter Homotopy in Application -- 7.3 An Illustrative Example: Triangles -- 7.4 Nested Parameter Homotopies -- 7.5 Side Conditions -- 7.6 Homotopies that Respect Symmetry Groups -- 7.7 Case Study: Stewart-Gough Platforms -- 7.8 Historical Note: The Cheater's Homotopy -- 7.9 Exercises.
Chapter 8 Polynomial Structures -- 8.1 A Hierarchy of Structures -- 8.2 Notation -- 8.3 Homotopy Paths for Linearly Parameterized Families -- 8.4 Product Homotopies -- 8.5 Polytope Structures -- 8.6 A Summarizing Example -- 8.7 Exercises -- Chapter 9 Case Studies -- 9.1 Nash Equilibria -- 9.2 Chemical Equilibrium -- 9.3 Stewart-Gough Forward Kinematics -- 9.4 Six-Revolute Serial-Link Robots -- 9.5 Planar Seven-Bar Structures -- 9.6 Four-Bar Linkage Design -- 9.7 Exercises -- Chapter 10 Endpoint Estimation -- 10.1 Nonsingular Endpoints -- 10.2 Singular Endpoints -- 10.3 Singular Endgames -- 10.4 Losing the Endgame -- 10.5 Deflation of Isolated Singularities -- 10.6 Exercises -- Chapter 11 Checking Results and Other Implementation Tips -- 11.1 Checks -- 11.2 Corrective Actions -- 11.3 Exercises -- PART III Positive Dimensional Solutions -- Chapter 12 Basic Algebraic Geometry -- 12.1 Affine Algebraic Sets -- 12.2 The Irreducible Decomposition for Affine Algebraic Sets -- 12.3 Further Remarks on Projective Algebraic Sets -- 12.4 Quasiprojective Algebraic Sets -- 12.5 Constructible Algebraic Sets -- 12.6 Multiplicity -- 12.7 Exercises -- Chapter 13 Basic Numerical Algebraic Geometry -- 13.1 Introduction to Witness Sets -- 13.2 Linear Slicing -- 13.3 Witness Sets -- 13.4 Rank of a Polynomial System -- 13.5 Randomization and Nonsquare Systems -- 13.6 Witness Supersets -- 13.7 Probabilistic Algorithms About Algebraic Sets -- 13.8 Summary -- 13.9 Exercises -- Chapter 14 A Cascade Algorithm for Witness Supersets -- 14.1 The Cascade Algorithm -- 14.2 Examples -- 14.3 Exercises -- Chapter 15 The Numerical Irreducible Decomposition -- 15.1 Membership Tests and the Numerical Irreducible Decomposition -- 15.2 Sampling a Component -- 15.3 Numerical Elimination Theory -- 15.4 Homotopy Membership and Monodromy -- 15.5 The Trace Test -- 15.6 Singular Path Tracking.
15.7 Exercises -- Chapter 16 The Intersection Of Algebraic Sets -- 16.1 Intersection of Irreducible Algebraic Sets -- 16.2 Equation-by-Equation Solution of Polynomial Systems -- 16.3 Exercises -- Appendices -- Appendix A Algebraic Geometry -- A.1 Holomorphic Functions and Complex Analytic Spaces -- A.2 Some Further Results on Holomorphic Functions -- A.3 Germs of Complex Analytic Sets -- A.4 Useful Results About Algebraic and Complex Analytic Sets -- A.5 Rational Mappings -- A.6 The Rank and the Projective Rank of an Algebraic System -- A.7 Universal Functions and Systems -- A.8 Linear Projections -- A.9 Bertini's Theorem and Some Consequences -- A.10 Some Useful Embeddings -- A.11 The Dual Variety -- A.12 A Monodromy Result -- A.13 Line Bundles and Vector Bundles -- A.14 Generic Behavior of Solutions of Polynomial Systems -- Appendix B Software for Polynomial Continuation -- Appendix C HomLab User's Guide -- C.1 Preliminaries -- C.2 Overview of HOMLAB -- C.3 Defining the System to Solve -- C.4 Linear Product Homotopies -- C.5 Parameter Homotopies -- C.6 Defining a Homotopy Function -- C.7 The Workhorse: Endgamer -- C.8 Solutions at Infinity and Dehomogenization -- Bibliography -- Index.
Abstract:
Written by the founders of the new and expanding field of numerical algebraic geometry, this is the first book that uses an algebraic-geometric approach to the numerical solution of polynomial systems and also the first one to treat numerical methods for finding positive dimensional solution sets. The text covers the full theory from methods developed for isolated solutions in the 1980âs to the most recent research on positive dimensional sets.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Added Author:
Electronic Access:
Click to View