Cover image for Microwave Radiometer Systems : Design and Analysis.
Microwave Radiometer Systems : Design and Analysis.
Title:
Microwave Radiometer Systems : Design and Analysis.
Author:
Skou, Niels.
ISBN:
9781580539753
Personal Author:
Edition:
2nd ed.
Physical Description:
1 online resource (227 pages)
Contents:
Microwave Radiometer Systems Design and Analysis Second Edition -- Contents -- Preface xi -- 1 Introduction 1 -- 2 Summary 3 -- 3 The Radiometer Receiver: Sensitivity and Accuracy 7 -- 3.1 What Is a Radiometer Receiver? 7 -- 3.2 The Sensitivity of the Radiometer 7 -- 3.3 Absolute Accuracy and Stability 9 -- 4 Radiometer Principles 13 -- 4.1 The Total Power Radiometer (TPR) 13 -- 4.2 The Dicke Radiometer (DR) 14 -- 4.3 The Noise-Injection Radiometer (NIR) 16 -- 4.4 The Correlation Radiometer (CORRAD) 18 -- 4.5 Hybrid Radiometer 20 -- 4.6 Other Radiometer Types 21 -- 5 Radiometer Receivers on a Block Diagram Level 25 -- 5.1 Receiver Principles 25 -- 5.1.1 Direct or Superheterodyne 25 -- 5.1.2 DSB or SSB with or without RF Preamplifier 26 -- 5.2 Dicke Radiometer 27 -- 5.2.1 Microwave Part 27 -- 5.2.2 The Noise Figure and the Sensitivity of the Radiometer 29 -- 5.2.3 The IF Circuitry and the Detector 30 -- 5.2.4 The Extreme Signal Levels 32 -- 5.2.5 The LF Circuitry 33 -- 5.2.6 The Analog-to-Digital Converter 34 -- 5.2.7 On the Sampling in the Radiometer: Aliasing 37 -- 5.3 The Noise-Injection Radiometer 38 -- 5.4 The Total Power Radiometer 40 -- 5.4.1 DSB Receiver without RF Preamplifier 40 -- 5.4.2 SSB Receiver with RF Preamplifier 42 -- 5.5 Stability Considerations 43 -- 6 The DTU Noise-Injection Radiometers Example 47 -- 7 Polarimetric Radiometers 55 -- 7.1 Polarimetry and Stokes Parameters 55 -- 7.2 Radiometric Signatures of the Ocean 57 -- 7.3 Four Configurations 57 -- 7.3.1 Polarization Combining Radiometers 57 -- 7.3.2 Correlation Radiometers 60 -- 7.4 Sensitivities 62 -- 7.5 Discussion of Configurations 64 -- 7.6 The DTU Polarimetric System 64 -- 8 Synthetic Aperture Radiometer Principles 69 -- 8.1 Introduction 69 -- 8.2 Practical Considerations 72 -- 8.2.1 RF Processing 72 -- 8.2.2 Basic Equation 73 -- 8.2.3 Image Processing 74.

8.2.4 Sensitivity 75 -- 8.3 Example 76 -- 9 Calibration and Linearity 81 -- 9.1 Why Calibrate? 81 -- 9.2 Calibration Sources 82 -- 9.3 Example: Calibration of a 5-GHz Radiometer 86 -- 9.4 Linearity Measured by Simple Means 87 -- 9.4.1 Background 88 -- 9.4.2 Simple Three-Point Calibration 89 -- 9.4.3 Linearity Checked by Slope Measurements 92 -- 9.4.4 Measurements 93 -- 9.5 Calibration of Polarimetric Radiometers 96 -- 10 Sensitivity and Stability: Experiments with Basic Radiometer Receivers 99 -- 10.1 Background 99 -- 10.2 The Radiometers Used in the Experiments 100 -- 10.3 The Experimental Setup 101 -- 10.4 5-GHz Sensitivity Measurements 102 -- 10.5 Stability Measurements 103 -- 10.5.1 Discussion of the 5-GHz DR Results 103 -- 10.5.2 The 5-GHz DR with Correction Algorithm 105 -- 10.5.3 The 17-GHz NIR Results 109 -- 10.5.4 Discussion of the TPR Results 111 -- 10.5.5 Back-End Stability 113 -- 10.6 Conclusions 114 -- 11 Radiometer Antennas and Real Aperture Imaging Considerations 117 -- 11.1 Beam Efficiency and Losses 117 -- 11.2 Antenna Types 119 -- 11.3 Imaging Considerations 121 -- 11.4 The Dwell Time Per Footprint Versus the Sampling Time in the Radiometer 125 -- 11.5 Receiver Considerations for Imagers 130 -- 12 Relationships Between Swath Width, Footprint, Integration Time, Sensitivity, Frequency, and Other Parameters for Satellite-Borne, Real Aperture Imaging Systems 133 -- 12.1 Mechanical Scan 134 -- 12.2 Push-Broom Systems 139 -- 12.3 Summary and Discussion 140 -- 12.4 Examples 143 -- 12.4.1 General-Purpose Multifrequency Mission 143 -- 12.4.2 Coastal Salinity Sensor 143 -- 12.4.3 Realistic Salinity Sensor 144 -- 13 First Example of a Spaceborne Imager: A General-Purpose Mechanical Scanner 147 -- 13.1 Background 147 -- 13.2 System Considerations 149 -- 13.2.1 General Geometric and Radiometric Characteristics 149.

13.2.2 Instrument Options 152 -- 13.2.3 Baseline Instrument Specifications 156 -- 13.2.4 Instrument Layout and Receiver Type 156 -- 13.3 Receiver Design 157 -- 13.3.1 The Direct Receivers (10.65-36.5 GHz) 157 -- 13.3.2 The 89-GHz DSB Receivers 158 -- 13.3.3 Integrated Receivers: Weight and Power 159 -- 13.3.4 Performance of the Receivers 160 -- 13.3.5 Critical Design Features 161 -- 13.4 Antenna Design 163 -- 13.5 Calibration and Linearity 165 -- 13.5.1 Prelaunch Radiometric Calibration 165 -- 13.5.2 On-Board Calibration 166 -- 13.6 System Issues 167 -- 13.6.1 System Weight and Power 167 -- 13.6.2 Data Rate 168 -- 13.7 Summary 169 -- 14 Second Example of a Spaceborne Imager: A Sea Salinity/Soil Moisture Push-Broom Radiometer System 171 -- 14.1 Background 171 -- 14.2 The Brightness Temperature of the Sea 172 -- 14.3 The Brightness Temperature of Moist Soil 175 -- 14.4 User Requirements for Geophysical and Spatial Resolution 177 -- 14.4.1 Salinity Measurements 177 -- 14.4.2 Soil Moisture Measurements 177 -- 14.5 A 1.4-GHz Push-Broom Radiometer System 177 -- 14.5.1 Sensitivity Considerations 177 -- 14.5.2 The 1.4-GHz Noise-Injection Radiometer Receiver 178 -- 14.5.3 Antenna Considerations 181 -- 14.5.4 Layout of the System 181 -- 14.6 Calibration 184 -- 14.7 A Disturbing Factor: The Faraday Rotation 186 -- 14.7.1 The Faraday Rotation 186 -- 14.7.2 Correction Based on Knowing the Rotation Angle 187 -- 14.7.3 Correction Based on the Polarization Ratio 189 -- 14.7.4 Consequences for Instrument Design 191 -- 14.7.5 Circumventing the Problem by Using the First Stokes Parameter 191 -- 14.8 Other Disturbing Factors: Space and Atmosphere 192 -- 14.8.1 Space Radiation 192 -- 14.8.2 Atmospheric Effects 193 -- 14.9 Summary 193 -- 15 Examples of Synthetic Aperture Radiometers 197 -- 15.1 Introduction 197 -- 15.2 Implementation of Synthesis 198.

15.3 Airborne Example: ESTAR 200 -- 15.3.1 Hardware 200 -- 15.3.2 Image Reconstruction 204 -- 15.3.3 Calibration 205 -- 15.3.4 Discussion 207 -- 15.3.5 Example of Imagery 208 -- 15.4 Spaceborne Examples 211 -- 15.4.1 HYDROSTAR 211 -- 15.4.2 SMOS 214 -- Acronyms 219.
Abstract:
Microwave radiometers are tools used for passive microwave remote sensing - a technological process that allows for the measurement of important parameters that help professionals understand and predict climate and weather patterns. Written by leading experts in industry and academia, this authoritative resource offers practitioners a solid understanding of radiometer systems and explains how to design a system based on given specifications, taking into account both technical aspects and geophysical realities. This second edition has been thoroughly updated to reflect the numerous advances that have been made in the field since the original edition was published in 1989. New material covered includes two of today's hottest microwave radiometry topics - polarimetric measurements and aperture synthesis.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: