Cover image for Cosmochemistry : The Melting Pot of the Elements.
Cosmochemistry : The Melting Pot of the Elements.
Title:
Cosmochemistry : The Melting Pot of the Elements.
Author:
Esteban, C.
ISBN:
9780511187469
Personal Author:
Physical Description:
1 online resource (314 pages)
Series:
Cambridge Contemporary Astrophysics
Contents:
Cover -- Half-title -- Title -- Copyright -- Contents -- Participants -- Preface -- Acknowledgements -- Primordial Alchemy: From The Big Bang To The Present Universe -- 1. Introduction -- 2. The Early Evolution of the Universe -- 2.1. Redshift -- 2.2. Dynamics -- 2.2.1. Counting Relativistic Degrees of Freedom -- 2.2.2. "Extra" Relativistic Energy -- 3. Big Bang Nucleosynthesis and the Primordial Abundances -- 3.1. An Early Universe Chronology -- 3.1.1. Neutron - Proton Interconversion -- 3.1.2. Building The Elements -- 3.2. The SBBN-Predicted Abundances -- 3.3. Variations On A Theme: Non-Standard BBN -- 4. Observational Status of the Relic Abundances -- 4.1. Deuterium -- 4.2. Helium-3 -- 4.3. Helium-4 -- 4.4. Lithium-7 -- 5. Confrontation Of Theoretical Predictions With Observational Data -- 5.1. Deuterium - The Baryometer Of Choice -- 5.2. SBBN Baryon Density - The Baryon Density At 20 Minutes -- 5.3. CMB Baryon Density The Baryon Density At A Few Hundred Thousand Years -- 5.4. The Baryon Density At 10 Gyr -- 5.5. Baryon Density Concordance -- 5.6. Testing The Consistency Of SBBN -- 6. BBN In Non-Standard Models -- 6.1. Degenerate BBN -- 7. Summary -- REFERENCES -- Stellar Nucleosynthesis -- 1. Introduction -- 1.1. Nuclear Reactions -- 1.2. Stellar Evolution -- 2. Nucleosynthesis in Massive Stars -- 2.1. Yields from massive star models -- 2.2. Oxygen isotopes from massive stars -- 2.2.1. The O yields in massive star models -- 2.2.2. The O yield and stellar wind mass loss -- 2.2.3. The production of O as function of metallicity -- 2.2.4. How to produce O ? -- 2.2.5. Clues from oxygen -- 2.3. Pre-supernova surface abundances -- 2.4. Effects of Rotation -- 3. The s-Process -- 3.1. Low mass stars -- 3.2. Massive stars -- 4. Nucleosynthesis in Binary Systems -- 4.1. Aluminium in Massive Binaries -- 4.2. Progenitors of Type Ia Supernovae.

4.2.1. Supersoft X-ray Sources -- 4.2.2. Helium shell flashes -- 4.2.3. White dwarf spin-up -- 4.2.4. Outlook -- 5. The Most Massive Stars -- 5.1. The Eddington limit -- 5.1.1. Does the Eddington limit apply in the stellar interior? -- 5.1.2. The Omega-limit -- 5.1.3. Rotating very massive stars -- 5.2. Evolution of very massive stars -- 5.3. Supermassive stars -- REFERENCES -- Observational Aspects Of Stellar Nucleosynthesis -- 1. Introduction -- 2. Stellar nucleosynthesis - A site survey -- 2.1. Sites -- 2.2. Surveying tools -- 3. Numbers and Notation -- 4. Pioneering Tales -- 4.1. Technetium in S Stars -- 4.2. The Spite Plateau -- 5. An Assumption and a Warning -- 6. Black Boxes and Black Magic -- 6.1. Why are abundance analyses incomplete? -- 6.2. Why does a line of E yield A(E) = n(E)/n(H)? -- 6.3. The Curve of Growth -- 7. Lithium, Beryllium, and Boron -- 7.1. Observational Constraints -- 7.2. Theoretical Proposals -- 7.3. Observed Abundances -- 7.3.1. Li-rich red giants -- 7.3.2. Lithium from Novae? -- 7.3.3. Galactic Evolution of Lithium -- 7.3.4. Galactic Evolution of Beryllium -- 7.3.5. Galactic Evolution of Boron -- 8. Stellar spectroscopy and the s-process -- 8.1. Introduction -- 8.2. Nuclear physics of the s-process -- 8.3. Operation of the s-process -- 8.4. AGB stars and the s-process -- 8.5. Weak s-process at low metallicities? -- 9. Concluding Remarks -- REFERENCES -- Abundance Determinations In H ii Regions And Planetary Nebulae -- 1. Introduction -- 2. Basic physics of photoionized nebulae -- 2.1. Ionization and recombination -- 2.1.1. Global ionization budget -- 2.1.2. The ionization structure -- 2.2. Heating and cooling -- 2.3. Line intensities -- 3. Basics of abundance determinations in ionized nebulae -- 3.1. Empirical methods -- 3.1.1. Direct methods -- 3.1.2. Strong line or statistical methods -- 3.2. Model fitting.

3.2.1. Philosophy of model fitting -- 3.2.2. Photoionization codes -- 4. Main problems and uncertainties in abundance determinations -- 4.1. Atomic data -- 4.1.1. Ionization, recombination and charge exchange -- 4.1.2. Transition probabilities, collision strengths and effective recombination coeffcients -- 4.2. Stellar atmospheres -- 4.3. Reddening correction -- 4.4. Aperture correction, nebular geometry and density inhomogeneities -- 4.5. Spatial temperature variations -- 4.5.1. Temperature gradients -- 4.5.2. Small scale temperature variations -- 4.6. The optical recombination lines mystery -- 4.7. The role of internal dust -- 4.7.1. Evidence for the presence of dust in the ionized regions -- 4.7.2. Heavy element depletion -- 4.7.3. The effect of dust on the ionization structure -- 4.7.4. The effect of dust obscuration on the emission line spectrum -- 4.7.5. The effects of grains on heating and cooling of the gas -- 4.8. The specific case of the helium abundance determination -- 5. Observational results on abundances in H ii regions of the Milky Way -- 5.1. The Orion nebula: a benchmark -- 5.2. Abundance patterns in the solar vicinity and the solar abundance discrepancy -- 5.3. Abundance gradients in the Galaxy from H ii regions -- 5.4. The Galactic center -- 5.5. Nebulae around evolved massive stars -- 6. Observational results on abundances in planetary nebulae -- 6.1. NGC 7027 and IC 418: two test cases -- 6.2. What do PN abundances tell us? -- 6.3. PNe as probes of the chemical evolution of galaxies -- 6.3.1. The universal Ne/H versus O/H relation -- 6.3.2. Abundance gradients from PNe in the Milky Way -- 6.3.3. PNe in the Galactic bulge -- 6.3.4. PNe in the Galactic halo -- 6.3.5. PNe probe the histories of nearby galaxies -- 6.4. PNe probe the nucleosynthesis in their progenitor stars -- 6.4.1. Global abundance ratios.

6.4.2. Abundance inhomogeneities -- REFERENCES -- Element Abundances In Nearby Galaxies -- 1. Introduction -- 2. Observational Methods for Measuring Abundances -- 2.1. Spectroscopy of H II Regions and Planetary Nebulae -- 2.1.1. Observational Considerations -- 2.1.2. The Direct Method -- 2.1.3. "Empirical" (Strong-Line) Calibrations -- 2.1.4. Photoionization Models -- 2.2. Spectroscopy of Individual Stars -- 2.3. Stellar Photometry and Color-Magnitude Diagrams -- 2.4. Spectrum Synthesis of Stellar Populations -- 2.5. Surface Photometry and Galaxy Colors -- 3. Abundances in Local Group Dwarf Elliptical Galaxies -- 3.1. Metallicities -- 3.2. Element Ratios -- 4. Abundance Profiles in Spirals and Irregulars -- 4.1. Gas and Stellar Masses -- 4.1.1. Neutral and Molecular Gas -- 4.1.2. Stellar Mass Densities -- 4.2. Spatial Abundance Profiles -- 4.3. Metallicity versus Galaxy Luminosity/Mass -- 4.4. Abundance Gradient Variations -- 4.5. Metallicity vs. Surface Brightness -- 4.6. Barred Spirals -- 4.7. Spiral Bulges -- 4.8. Cluster Spirals and Environment -- 5. Element Abundance Ratios in Spiral and Irregular Galaxies -- 5.1. Helium -- 5.2. Carbon -- 5.3. Nitrogen -- 5.4. Neon, Sulfur and Argon -- 5.5. Other Elements -- 6. Open Questions and Concluding Remarks -- REFERENCES -- Chemical Evolution Of Galaxies And Intracluster Medium -- 1. Basic parameters of chemical evolution -- 2. The stellar birthrate -- 2.1. Theoretical recipes for the SFR -- 2.2. The tracers of star formation -- 2.3. The IMF: Various Parametrizations -- 2.4. Derivation of the IMF -- 2.5. The Infall Rate: Various Parametrizations -- 3. Nucleosynthesis -- 3.1. Nucleosynthesis in the Big Bang -- 3.2. Stellar Nucleosynthesis -- 3.3. Supernova Progenitors -- 3.4. Element production -- 3.5. Stellar yields -- 4. Modelling chemical evolution -- 4.1. Analytical models.

4.2. Failure of the Simple Model -- 4.3. Analytical models with gas flows -- 5. Equations with Type Ia and II SNe -- 5.1. Type Ia SN rates -- 6. The formation and evolution of the Milky Way -- 6.1. Models for the Milky Way -- 6.2. The two-infall model -- 6.3. Applications to the Local Disk -- 6.4. Applications to the whole disk -- 6.5. The Role of Radial Flows in the evolution of the Galactic Disk -- 6.6. The Role of the IMF in the evolution of the Galactic Disk -- 6.7. Scenarios for Bulge Formation -- 7. Disks of Other Spirals -- 8. Conclusions on the Milky Way and other spirals -- 9. Elliptical Galaxies -- 9.1. Observational properties -- 9.2. Formation of Ellipticals -- 9.3. Formation of Ellipticals at low z -- 9.4. Formation of Ellipticals at high z -- 9.5. Models for ellipticals based on galactic winds -- 9.6. Failure of Larson's Model -- 9.7. Averaged Stellar Metallicities -- 9.8. Multi-Zone Models -- 10. Conclusions on Ellipticals -- 11. Evolution of Dwarf Galaxies -- 11.1. Evidences for Galactic Winds -- 11.2. Results for BCG from chemical models -- 11.3. Results from chemo-dynamical models -- 11.4. Dwarf galaxies and DLA Systems -- 12. Chemical Enrichment of the ICM -- 12.1. Models for the ICM -- 12.2. MV88 Results -- 12.3. [α/Fe] Ratios in the ICM -- 12.4. [α/Fe] ratios and IMLR -- 13. Conclusions on the ICM -- REFERENCES -- Element Abundances Through The Cosmic Ages -- 1. Introduction -- 1.1. Some Basic Concepts -- 2. Damped Lyα Systems -- 2.1. What Are They? -- 2.2. Why Do We Care? -- 2.3. The Metallicity of DLAs -- 2.4. Element Ratios -- 2.4.1. Dust in DLAs -- 2.4.2. Alpha-capture elements -- 2.4.3. The Nucleosynthesis of Nitrogen -- 3. The Lyman Alpha Forest -- 3.1. Metals in the Lyα Forest -- 3.2. C IV at the Highest Redshifts -- 4. Lyman Break Galaxies -- 4.1. Stellar Populations and the Initial Mass Function.

4.2. Element Abundances in the Interstellar Gas.
Abstract:
A timely 2004 review of developments in cosmochemistry over the last decade.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: