Cover image for PEM Fuel Cells : Theory and Practice.
PEM Fuel Cells : Theory and Practice.
Title:
PEM Fuel Cells : Theory and Practice.
Author:
Barbir, Frano.
ISBN:
9780080455419
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (448 pages)
Series:
Sustainable World
Contents:
Foreword -- Preface and Acknowledgments -- Chapter 1: Introduction -- 1.1. What Is a Fuel Cell? -- 1.2. A Very Brief History of Fuel Cells -- 1.3. Types of Fuel Cells -- 1.4. How Does a PEM Fuel Cell Work? -- 1.5. Why Do We Need Fuel Cells? -- 1.6. Fuel Cell Applications -- References -- Chapter 2: Fuel Cell Basic Chemistry and Thermodynamics -- 2.1. Basic Reactions -- 2.2. Heat of Reaction -- 2.3. Higher and Lower Heating Value of Hydrogen -- 2.4. Theoretical Electrical Work -- 2.5. Theoretical Fuel Cell Potential -- 2.6. Effect of Temperature -- 2.7. Theoretical Fuel Cell Efficiency -- 2.8. Carnot Efficiency Myth -- 2.9. Effect of Pressure -- 2.10. Summary -- References -- Problems -- Quiz -- Chapter 3: Fuel Cell Electrochemistry -- 3.1. Electrode Kinetics -- 3.1.1. Reaction Rate -- 3.1.2. Reaction Constants -- Transfer Coefficient -- 3.1.3. Current Potential Relationship-Butler-Volmer Equation -- 3.1.4. Exchange Current Density -- 3.2. Voltage Losses -- 3.2.1. Activation Polarization -- 3.2.2. Internal Currents and Crossover Losses -- 3.2.3. Ohmic (Resistive) Losses -- 3.2.4. Concentration Polarization -- 3.3. Cell Potential-Polarization Curve -- 3.4. Distribution of Potential Across A Fuel Cell -- 3.5. Sensitivity of Parameters in Polarization Curve -- 3.5.1. Effect of Transfer Coefficient/Tafel Slope -- 3.5.2. Effect of Exchange Current Density -- 3.5.3. Effect of Hydrogen Crossover and Internal Current Loss -- 3.5.4. Effect of Internal Resistance -- 3.5.5. Effect of Limiting Current Density -- 3.5.6. Effect of Operating Pressure -- 3.5.7. Air vs Oxygen -- 3.5.8. Effect of Operating Temperature -- 3.6. Fuel Cell Efficiency -- 3.7. Implications and Use of Fuel Cell Polarization Curve -- 3.7.1. Other Curves Resulting from Polarization Curve -- 3.7.2. Linear Approximation of Polarization Curve.

3.7.3. Use of Polarization Curve for Fuel Cell Sizing -- References -- Problems -- Quiz -- Chapter 4: Main Cell Components, Materials Properties and Processes -- 4.1. Cell Description -- 4.2. Membrane -- 4.2.1. Water Uptake -- 4.2.2. Physical Properties -- 4.2.3. Protonic Conductivity -- 4.2.4. Water Transport -- 4.2.5. Gas Permeation -- 4.3. Electrode -- 4.4. Gas Diffusion Layer -- 4.4.1. Treatments and Coatings -- 4.4.2. Porosity -- 4.4.3. Electrical Conductivity -- 4.4.4. Compressibility -- 4.4.5. Permeability -- 4.5. Bipolar Plates -- 4.5.1. Materials -- 4.5.2. Properties -- References -- Problems -- Quiz -- Chapter 5: Fuel Cell Operating Conditions -- 5.1. Operating Pressure -- 5.2. Operating Temperature -- 5.3. Reactants Flow Rates -- 5.4. Reactants Humidity -- 5.5. Fuel Cell Mass Balance -- 5.5.1. Inlet Flow Rates -- 5.5.2. Outlet Flow Rates -- 5.6. Fuel Cell Energy Balance -- References -- Problems -- Quiz -- Chapter 6: Stack Design -- 6.1. Sizing of a Fuel Cell Stack -- 6.2. Stack Configuration -- 6.3. Uniform Distribution of Reactants to Each Cell -- 6.4. Uniform Distribution of Reactants Inside Each Cell -- 6.4.1. Shape of the Flow Field -- 6.4.2. Flow Field Orientation -- 6.4.3. Configuration of Channels -- 6.4.4. Channel's Shape, Dimensions, and Spacing -- 6.4.5. Pressure Drop through the Flow Field -- 6.5. Heat Removal from a Fuel Cell Stack -- 6.5.1. Stack Heat Balance -- 6.5.2. Heat Conduction -- 6.5.3. Active Heat Removal -- 6.5.4. Heat Dissipation from the Stack by Natural Convection and Radiation -- 6.5.5. Alternative Stack Cooling Options -- 6.6. Stack Clamping -- References -- Problems -- Quiz -- Chapter 7: Fuel Cell Modeling -- 7.1. Theory and Governing Equations -- 7.1.1. Conservation of Mass -- 7.1.2. Conservation of Momentum -- 7.1.3. Conservation of Energy -- 7.1.4. Conservation of Species -- 7.1.5. Conservation of Charge.

7.2. Modeling Domains -- 7.3. Modeling Examples -- 7.3.1. One-Dimensional through-the-Membrane Model (Bernardi-Verbrugge) -- 7.3.2. One-Dimensional Catalyst Layer Model (You-Liu) -- 7.3.3. Two-Dimensional above-the-Channel Model (Jeng et al.) -- 7.3.4. Two-Dimensional along-the-Channel Model (Gurau et al.) -- 7.3.5. Three-Dimensional Models -- 7.4. Conclusions -- References -- Problems -- Quiz -- Chapter 8: Fuel Cell Diagnostics -- 8.1. Polarization Curve -- 8.2. Current Interrupt -- 8.3. AC Impedance Spectroscopy -- 8.4. Pressure Drop as a Diagnostic Tool -- 8.5. Current Density Mapping -- 8.6. Neutron Imaging -- References -- Problems -- Quiz -- Chapter 9: Fuel Cell System Design -- 9.1. Hydrogen-Oxygen Systems -- 9.1.1. Oxygen Supply -- 9.1.2. Hydrogen Supply -- 9.1.3. Water and Heat Management-System Integration -- 9.2. Hydrogen-Air Systems -- 9.2.1. Air Supply -- 9.2.2. Passive Air Supply -- 9.2.3. Hydrogen Supply -- 9.2.4. Humidification Schemes -- 9.2.5. Water and Heat Management-System Integration -- 9.3. Fuel Cell Systems with Fuel Processor -- 9.3.1. Basic Processes and Reactions -- 9.3.2. Steam Reforming -- 9.3.3. Partial Oxidation and Autothermal Reforming -- 9.3.4. Effect of Reformate on Fuel Cell Performance -- 9.3.5. System Integration -- 9.4. Electrical Subsystem -- 9.5. System Efficiency -- References -- Problems -- Quiz -- Chapter 10: Fuel Cell Applications -- 10.1. Transportation Applications -- 10.1.1. Automobiles -- 10.1.2. Buses -- 10.1.3. Utility Vehicles -- 10.1.4. Scooters and Bicycles -- 10.2. Stationary Power -- 10.2.1. Classification of Stationary Fuel Cell Systems -- 10.2.2. System Configuration -- 10.2.3. Efficiency of Entire Fuel Cell System -- 10.2.4. Economics of Fuel Cell Systems -- 10.3. Backup Power -- 10.4. Fuel Cells for Small Portable Power -- 10.5. Regenerative Fuel Cells and Their Applications.

10.5.1. Design Trade-offs -- 10.5.2. Regenerative Fuel Cell Applications -- References -- Problems -- Quiz -- Chapter 11: Fuel Cells and Hydrogen Economy -- 11.1. Introduction -- 11.2. Transitions in Energy Supply -- 11.3. History of Hydrogen as Fuel -- 11.4. Hydrogen Energy System -- 11.5. Hydrogen Energy Technologies -- 11.5.1. Technologies for Hydrogen Production -- 11.5.2. Technologies for Hydrogen Storage -- 11.5.3. Technologies for Hydrogen Utilization -- 11.5.4. Safety Aspects of Hydrogen as Fuel -- 11.6. Predicting the Future -- 11.7. Transition to Hydrogen Economy -- 11.8. Coming Energy Revolution? -- 11.9. Conclusions -- References -- Index.
Abstract:
Fuel cells are electrochemical energy conversion devices that convert hydrogen and oxygen into water, producing electricity and heat in the process and providing fuel efficiency and reductions in pollutants. Demand for this technology is growing rapidly. Fuel cells are being commercialized for stationary and portable electricity generation, and as a replacement for internal combustion engines in automobiles. Proton Exchange Membrane (PEM) fuel cells in particular are experiencing an upsurge. They have high power density and can vary their output quickly to meet shifts in power demand. Until now, there has been little written about this important technology. This book lays the groundwork for fuel cell engineers, technicians and students. It covers the fundamental aspects of fuel cell design, electrochemistry of the technology, heat and mass transport, system design and applications to bring this technology to professionals at all levels. * Comprehensive guide for engineers, researchers and policymakers * Covers theory and practice of PEM fuel cells * Contains hundreds of original illustrations and real-life engineering examples.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: