
Digital Power Electronics and Applications.
Title:
Digital Power Electronics and Applications.
Author:
Luo, Fang Lin.
ISBN:
9780080459028
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (421 pages)
Contents:
Cover -- Digital Power Electronics and Applications -- Contents -- Preface -- Autobiography -- 1. Introduction -- 1.1 Historical review -- 1.1.1 WORK, ENERGY AND HEAT -- 1.1.2 DC AND AC EQUIPMENT -- DC Power Supply -- AC Power Supply -- 1.1.3 LOADS -- Linear Passive Loads -- Linear Dynamic Loads -- 1.1.4 IMPEDANCE -- 1.1.5 POWERS -- Apparent Power S -- Power P -- Reactive Power Q -- 1.2 Traditional parameters -- 1.2.1 POWER FACTOR (PF) -- 1.2.2 POWER-TRANSFER EFFICIENCY (η) -- 1.2.3 TOTAL HARMONIC DISTORTION (THD) -- 1.2.4 RIPPLE FACTOR (RF) -- 1.2.5 APPLICATION EXAMPLES -- Power and Efficiency (η) -- An R-L Circuit Calculation -- A Three-Phase Circuit Calculation -- 1.3 Multiple-quadrant operations and choppers -- 1.3.1 THE FIRST-QUADRANT CHOPPER -- 1.3.2 THE SECOND-QUADRANT CHOPPER -- 1.3.3 THE THIRD-QUADRANT CHOPPER -- 1.3.4 THE FOURTH-QUADRANT CHOPPER -- 1.3.5 THE FIRST-SECOND-QUADRANT CHOPPER -- 1.3.6 THE THIRD-FOURTH-QUADRANT CHOPPER -- 1.3.7 THE FOUR-QUADRANT CHOPPER -- 1.4 Digital power electronics: pump circuits and conversion technology -- 1.4.1 FUNDAMENTAL PUMP CIRCUITS -- 1.4.2 AC/DC RECTIFIERS -- 1.4.3 DC/AC PWM INVERTERS -- 1.4.4 DC/DC CONVERTERS -- 1.4.5 AC/AC CONVERTERS -- 1.5 Shortage of analog power electronics and conversion technology -- 1.6 Power semiconductor devices applied in digital power electronics -- FURTHER READING -- 2. Energy Factor (EF) and Sub-sequential Parameters -- 2.1 Introduction -- 2.2 Pumping energy (PE) -- 2.2.1 ENERGY QUANTIZATION -- 2.2.2 ENERGY QUANTIZATION FUNCTION -- 2.3 Stored energy (SE) -- 2.3.1 STORED ENERGY IN CONTINUOUS CONDUCTION MODE -- Stored Energy (SE) -- Capacitor-Inductor Stored Energy Ratio (CIR) -- Energy Losses (EL) -- Stored Energy Variation on Inductors and Capacitors (VE) -- 2.3.2 STORED ENERGY IN DISCONTINUOUS CONDUCTION MODE (DCM) -- 2.4 Energy factor (EF).
2.5 Variation energy factor (EF[sub(V)]) -- 2.6 Time constant, τ, and damping time constant, τ[sub(d)] -- 2.6.1 TIME CONSTANT, τ -- 2.6.2 DAMPING TIME CONSTANT, τ[sub(d)] -- 2.6.3 TIME CONSTANT RATIO, ξ -- 2.6.4 MATHEMATICAL MODELING FOR POWER DC/DC CONVERTERS -- 2.7 Examples of applications -- 2.7.1 A BUCK CONVERTER IN CCM -- Buck Converter without Energy Losses (r[sub(L)] = 0Ω) -- Buck Converter with Small Energy Losses (r[sub(L)] = 1.5Ω) -- Buck Converter with Energy Losses (r[sub(L)] = 4.5Ω) -- Buck Converter with Large Energy Losses (r[sub(L)] = 6Ω) -- 2.7.2 A SUPER-LIFT LUO-CONVERTER IN CCM -- 2.7.3 A BOOST CONVERTER IN CCM (NO POWER LOSSES) -- 2.7.4 A BUCK-BOOST CONVERTER IN CCM (NO POWER LOSSES) -- 2.7.5 POSITIVE-OUTPUT LUO-CONVERTER IN CCM (NO POWER LOSSES) -- 2.8 Small signal analysis -- 2.8.1 A BUCK CONVERTER IN CCM WITHOUT ENERGY LOSSES (r[sub(L)] = 0) -- 2.8.2 BUCK-CONVERTER WITH SMALL ENERGY LOSSES (r[sub(L)] = 1.5Ω) -- 2.8.3 SUPER-LIFT LUO-CONVERTER WITH ENERGY LOSSES (r[sub(L)] = 0.12Ω) -- FURTHER READING -- APPENDIX A - A SECOND-ORDER TRANSFER FUNCTION -- A.1 Very Small Damping Time Constant -- A.2 Small Damping Time Constant -- A.3 Critical Damping Time Constant -- A.4 Large Damping Time Constant -- APPENDIX B - SOME CALCULATION FORMULAE DERIVATIONS -- B.1 Transfer Function of Buck Converter -- B.2 Transfer Function of Super-Lift Luo-converter -- B.3 Simplified Transfer function of Super-Lift Luo-converter -- B.4 Time Constants τ and τ[sub(d), and Ratio ξ -- 3. Basic Mathematics of Digital Control Systems -- 3.1 Introduction -- 3.2 Digital Signals and Coding -- 3.3 Shannon's sampling theorem -- 3.3.1 BRIEF INTRODUCTION TO NYQUIST SAMPLING THEORY -- 3.3.2 SHANNON SAMPLING THEOREM -- 3.4 Sample-and-hold devices -- 3.4.1 DIGITAL WORDS AND CODES -- 3.4.2 SAMPLING PROCESS -- 3.5 Analog-to-digital conversion.
3.5.1 A/D CONVERSION PROCESS -- 3.5.2 A/D CONVERTERS -- 3.6 Digital-to-analog conversion -- 3.6.1 D/A CONVERSION PROCESS -- 3.6.2 D/A CONVERTERS -- 3.6.3 A/D AND D/A CONVERSION ERRORS -- 3.7 Energy quantization -- 3.8 Introduction to reconstruction of sampled signals -- 3.9 Data conversion: the zero-order hold -- 3.10 The first-order hold -- 3.11 The second-order hold -- 3.11.1 VERY SMALL DAMPING TIME CONSTANT τ[sub(d)] -- 3.11.2 SMALL DAMPING TIME CONSTANT τ[sub(d)] τ/4 -- 3.12 The Laplace transform (the s-domain) -- 3.13 The z-transform (the z-domain) -- FURTHER READING -- 4. Mathematical Modeling of Digital Power Electronics -- 4.1 Introduction -- 4.2 A zero-order hold (ZOH) for AC/DC controlled rectifiers -- 4.2.1 TRADITIONAL MODELING FOR AC/DC CONTROLLED RECTIFIERS -- 4.2.2 A ZERO-ORDER HOLD FOR AC/DC CONTROLLED RECTIFIERS IN DIGITAL CONTROL -- 4.3 A first-order transfer function for DC/AC pulse-width-modulation inverters -- 4.3.1 TRADITIONAL MODELING FOR DC/AC PWM INVERTERS -- 4.3.2 A FIRST-ORDER HOLD FOR DC/AC PWM INVERTERS IN DIGITAL CONTROL -- 4.4 A second-order transfer function for DC/DC converters -- 4.4.1 TRADITIONAL MODELING FOR DC/DC CONVERTERS -- 4.4.2 A SECOND-ORDER HOLD FOR DC/DC CONVERTERS IN DIGITAL CONTROL -- 4.5 A first-order transfer function for AC/AC (AC/DC/AC) converters -- 4.5.1 TRADITIONAL MODELING FOR AC/DC CONTROLLED RECTIFIERS -- 4.5.2 A FOH FOR AC/AC CONVERTERS IN DIGITAL CONTROL -- FURTHER READING -- 5. Digitally Controlled AC/DC Rectifiers -- 5.1 Introduction -- 5.1.1 SINGLE-PHASE HALF-WAVE DIODE RECTIFIER -- 5.1.2 SINGLE-PHASE FULL-WAVE DIODE RECTIFIER -- Parameters -- Power Factor -- 5.1.3 THREE-PHASE HALF-WAVE DIODE RECTIFIER -- 5.1.4 THREE-PHASE FULL-WAVE DIODE RECTIFIER.
5.1.5 THREE-PHASE DOUBLE-ANTI-STAR WITH INTERPHASE-TRANSFORMER RECTIFIER -- 5.1.6 SIX-PHASE HALF-WAVE DIODE RECTIFIER -- 5.1.7 SIX-PHASE FULL-WAVE DIODE RECTIFIER -- 5.2 Mathematical modeling for AC/DC rectifiers -- 5.3 Single-phase half-wave controlled AC/DC rectifier -- 5.4 Single-phase full-wave AC/DC rectifier -- 5.5 Three-phase half-wave controlled AC/DC rectifier -- 5.6 Three-phase full-wave controlled AC/DC rectifier -- 5.7 Three-phase double-anti-star with interphase-transformer controlled AC/DC rectifier -- 5.8 Six-phase half-wave controlled AC/DC rectifier -- 5.9 Six-phase full-wave controlled AC/DC rectifier -- FURTHER READING -- 6. Digitally Controlled DC/AC Inverters -- 6.1 Introduction -- 6.1.1 SINGLE-PHASE HALF-BRIDGE VSI -- 6.1.2 SINGLE-PHASE FULL-BRIDGE VSI -- 6.1.3 THREE-PHASE FULL-BRIDGE VSI -- 6.1.4 THREE-PHASE FULL-BRIDGE CSI -- 6.1.5 MULTISTAGE PWM INVERTER -- 6.1.6 MULTILEVEL PWM INVERTER -- 6.2 Mathematical modeling for DC/AC PWM inverters -- 6.3 Single-phase half-wave VSI -- 6.4 Single-phase full-bridge PWM VSI -- 6.5 Three-phase full-bridge PWM VSI -- 6.6 Three-phase full-bridge PWM CSI -- 6.7 Multistage PWM inverter -- 6.8 Multilevel PWM inverter -- FURTHER READING -- 7. Digitally Controlled DC/DC Converters -- 7.1 Introduction -- 7.1.1 THE FIRST-GENERATION CONVERTERS -- Fundamental converters -- Buck converter -- Boost converter -- Buck-Boost converter -- Transformer-Type Converters -- Forward converter -- Push-Pull Converter -- Fly-back Converter -- Half-bridge converter -- Bridge Converter -- Zeta Converter -- Forward Converter with Tertiary Winding and Multiple Outputs -- Developed Converters -- P/O Luo-Converter -- N/O Luo-Converter -- D/O Luo-Converter -- Cúk-Converter -- SEPIC -- Voltage-Lift Converters -- Super-Lift Converters -- 7.1.2 THE SECOND-GENERATION CONVERTERS -- 7.1.3 THE THIRD-GENERATION CONVERTERS.
Switched-Capacitor Converters -- Switched-Inductor Converters -- 7.1.4 THE FOURTH-GENERATION CONVERTERS -- Zero-Current-Switching Quasi-Resonant Converters -- Zero-Voltage-Switching Quasi-Resonant Converters -- Zero-Transition Converters -- 7.1.5 THE FIFTH-GENERATION CONVERTERS -- 7.1.6 THE SIXTH-GENERATION CONVERTERS -- 7.1.7 ALL PROTOTYPES AND DC/DC CONVERTER FAMILY TREE -- 7.2 Mathematical Modeling for power DC/DC converters -- 7.3 Fundamental DC/DC converter -- 7.4 Developed DC/DC converters -- 7.5 Soft-switching converters -- 7.6 Multi-element resonant power converters -- FURTHER READING -- 8. Digitally Controlled AC/AC Converters -- 8.1 Introduction -- 8.1.1 SINGLE-PHASE AC/AC VOLTAGE CONTROLLER -- Phase Angle Control -- On/Off Control -- PWMAC Chopper Control -- 8.1.2 THREE-PHASE AC/AC VOLTAGE CONTROLLER -- Phase Angle Control -- On/Off Control -- PWMAC/AC Control -- 8.1.3 SISO CYCLOCONVERTERS -- 8.1.4 TISO CYCLOCONVERTERS -- 8.1.5 TITO CYCLOCONVERTERS -- 8.1.6 AC/DC/AC CONVERTERS -- 8.1.7 MATRIX CONVERTERS -- Venturini Method -- SVM Method -- Control Implementation and Comparison of the Two Methods -- 8.2 Traditional modeling for AC/AC (AC/DC/AC) converters -- 8.3 Single-phase AC/AC converter -- 8.4 Three-phase AC/AC voltage controllers -- 8.5 SISO cycloconverters -- 8.6 TISO cycloconverters -- 8.7 TITO cycloconverters -- 8.8 AC/DC/AC PWM converters -- 8.9 Matrix converters -- FURTHER READING -- 9. Open-loop Control for Digital Power Electronics -- 9.1 Introduction -- 9.1.1 STABILITY ANALYSIS -- Converters Open-Loop Analysis -- Analysis of Converters with a First-Order Load -- Analysis of Converters with a First-Order Load Plus an Integral Element -- 9.1.2 UNIT-STEP RESPONSES -- Analysis of Converters with a First-Order Load -- Analysis of Converters with a First-Order Load Plus an Integral Element -- 9.1.3 IMPULSE RESPONSES.
Analysis of Converters with a First-Order Load.
Abstract:
The purpose of this book is to describe the theory of Digital Power Electronics and its applications. The authors apply digital control theory to power electronics in a manner thoroughly different from the traditional, analog control scheme. In order to apply digital control theory to power electronics, the authors define a number of new parameters, including the energy factor, pumping energy, stored energy, time constant, and damping time constant. These parameters differ from traditional parameters such as the power factor, power transfer efficiency, ripple factor, and total harmonic distortion. These new parameters result in the definition of new mathematical modeling: A zero-order-hold (ZOH) is used to simulate all AC/DC rectifiers. A first-order-hold (FOH) is used to simulate all DC/AC inverters. A second-order-hold (SOH) is used to simulate all DC/DC converters. A first-order-hold (FOH) is used to simulate all AC/AC (AC/DC/AC) converters. * Presents most up-to-date methods of analysis and control algorithms for developing power electronic converters and power switching circuits * Provides an invaluable reference for engineers designing power converters, commercial power supplies, control systems for motor drives, active filters, etc. * Presents methods of analysis not available in other books.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View