Cover image for Modelling of Mechanical Systems : Structural Elements.
Modelling of Mechanical Systems : Structural Elements.
Title:
Modelling of Mechanical Systems : Structural Elements.
Author:
Axisa, Francois.
ISBN:
9780080461366
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (521 pages)
Series:
Modelling of Mechanical Systems ; v.v. 2

Modelling of Mechanical Systems
Contents:
MODELLING OF MECHANICAL SYSTEMS VOLUME 2 -- Contents -- Preface -- Introduction -- Chapter 1. Solid mechanics -- 1.1.Introduction -- 1.2. Equilibrium equations of a continuum -- 1.2.1. Displacements and strains -- 1.2.2. Indicial and symbolic notations -- 1.2.3. Stresses -- 1.2.4. Equations of dynamical equilibrium -- 1.2.5. Stress-strain relationships for an isotropic elastic material -- 1.2.6. Equations of elastic vibrations (Navier 's equations) -- 1.3. Hamilton's principle -- 1.3.1. General presentation of the formalism -- 1.3.2. Application to a three-dimensional solid -- 1.3.2.1. Hamilton 's principle -- 1.3.2.2. Hilbert functional vector space. -- 1.3.2.3. Variation of the kinetic energy -- 1.3.2.4. Variation of the strain energy. -- 1.3.2.5. Variation of the external load work -- 1.3.2.6. Equilibrium equations and boundary conditions -- 1.3.2.7. Stress tensor and Lagrange 's multipliers -- 1.3.2.8. Variation of the elastic strain energy -- 1.3.2.9. Equation of elastic vibrations -- 1.3.2.10. Conservation of mechanical energy -- 1.3.2.11. Uniqueness of solution of motion equations -- 1.4. Elastic waves in three-dimensional media -- 1.4.1. Material oscillations in a continuous medium interpreted as waves -- 1.4.2. Harmonic solutions of Navier 's equations -- 1.4.3. Dilatation and shear elastic waves -- 1.4.3.1. Irrotational,or potential motion -- 1.4.3.2. Equivoluminal,or shear motion. -- 1.4.3.3. Irrotational harmonic waves (dilatation or pressure waves) -- 1.4.3.4. Shear waves (equivoluminal or rotational waves) -- 1.4.4. Phase and group velocities . -- 1.4.5. Wave reflection at the boundary of a semi-infinite medium -- 1.4.5.1. Complex amplitude of harmonic and plane waves at oblique incidence -- 1.4.5.2. Reflection of (SH)waves on a free boundary -- 1.4.5.3. Reflection of (P)waves on a free boundary -- 1.4.6. Guided waves.

1.4.6.1. Guided (SH)waves in a plane layer -- 1.4.6.2. Physical interpretation -- 1.4.6.3. Waves in an infinite elastic rod of circular cross-section -- 1.4.7. Standing waves and natural modes of vibration -- 1.4.7.1. Dilatation plane modes of vibration -- 1.4.7.2. Dilatation modes of vibration in three dimensions -- 1.4.7.3. Shear plane modes of vibration -- 1.5. From solids to structural elements -- 1.5.1. Saint-Venant 's principle -- 1.5.2. Shape criterion to reduce the dimension of a problem -- 1.5.2.1. Compression of a solid body shaped as a slender parallelepiped -- 1.5.2.2. Shearing of a slender parallelepiped -- 1.5.2.3. Validity of the simplification for a dynamic loading -- 1.5.2.4. Structural elements in engineering -- Chapter 2. Straight beam models:Newtonian approach -- 2.1. Simplified representation of a 3D continuous medium by an equivalent 1D model -- 2.1.1. Beam geometry -- 2.1.2. Global and local displacements -- 2.1.3. Local and global strains -- 2.1.4. Local and global stresses -- 2.1.5. Elastic stresses -- 2.1.6. Equilibrium in terms of generalized stresses -- 2.1.6.1. Equilibrium of forces -- 2.1.6.2. Equilibrium of the moments. -- 2.2. Small elastic motion -- 2.2.1. Longitudinal mode of deformation -- 2.2.1.1. Local equilibrium -- 2.2.1.2. General solution of the static equilibrium without external loading -- 2.2.1.3. Elastic boundary conditions -- 2.2.1.4. Concentrated loads. -- 2.2.1.5. Intermediate supports -- 2.2.2. Shear mode of deformation -- 2.2.2.1. Local equilibrium -- 2.2.2.2. General solution without external loading -- 2.2.2.3. Elastic boundary conditions -- 2.2.2.4. Concentrated loads. -- 2.2.2.5. Intermediate supports -- 2.2.3. Torsion mode of deformation -- 2.2.3.1. Torsion without warping -- 2.2.3.2. Local equilibrium -- 2.2.3.3. General solution without loading -- 2.2.3.4. Elastic boundary conditions.

2.2.3.5. Concentrated loads. -- 2.2.3.6. Intermediate supports -- 2.2.3.7. Torsion with warping:Saint Venant 's theory -- 2.2.4. Pure bending mode of deformation -- 2.2.4.1. Simplifying hypotheses of the Bernoulli -Euler model -- 2.2.4.2. Local equilibrium -- 2.2.4.3. Elastic boundary conditions -- 2.2.4.4. Intermediate supports -- 2.2.4.5. Concentrated loads -- 2.2.4.6. General solution of the static and homogeneous equation -- 2.2.4.7. Application to some problems of practical interest -- 2.2.5. Formulation of the boundary conditions -- 2.2.5.1. Elastic impedances. -- 2.2.5.2. Generalized mechanical impedances -- 2.2.5.3. Homogeneous and inhomogeneous conditions -- 2.2.6. More about transverse shear stresses and straight beam models -- 2.2.6.1. Asymmetrical cross-sections and shear (or twist) centre -- 2.2.6.2. Slenderness ratio and lateral deflection -- 2.3. Thermoelastic behaviour of a straight beam -- 2.3.1. 3D law of thermal expansion -- 2.3.2. Thermoelastic axial response -- 2.3.3. Thermoelastic bending of a beam -- 2.4. Elastic-plastic beam -- 2.4.1. Elastic-plastic behaviour under uniform traction -- 2.4.2. Elastic-plastic behaviour under bending -- 2.4.2.1. Skin stress -- 2.4.2.2. Moment-curvature law and failure load -- 2.4.2.3. Elastic-plastic bending:global constitutive law -- 2.4.2.4. Superposition of several modes of deformation -- Chapter 3. Straight beam models:Hamilton 's principle -- 3.1. Introduction -- 3.2. Variational formulation of the straight beam equations -- 3.2.1. Longitudinal motion -- 3.2.1.1. Model neglecting the Poisson effect -- 3.2.1.2. Model including the Poisson effect (Love -Rayleigh model) -- 3.2.2. Bending and transverse shear motion -- 3.2.2.1. Bending without shear:Bernoulli -Euler model -- 3.2.2.2. Bending including transverse shear:the Timoshenko model in statics.

3.2.2.3. The Rayleigh -Timoshenko dynamic model -- 3.2.3. Bending of a beam prestressed by an axial force -- 3.2.3.1. Strain energy and Lagrangian -- 3.2.3.2. Vibration equation and boundary conditions -- 3.2.3.3. Static response to a transverse force and buckling instability -- 3.2.3.4. Follower loads -- 3.3. Weighted integral formulations -- 3.3.1. Introduction -- 3.3.2. Weighted equations of motion -- 3.3.3. Concentrated loads expressed in terms of distributions -- 3.3.3.1. External loads -- 3.3.3.2. Intermediate supports -- 3.3.3.3. A comment on the use of distributions in mechanics -- 3.3.4. Adjoint and self-adjoint operators -- 3.3.5. Generic properties of conservative operators -- 3.4. Finite element discretization -- 3.4.1. Introduction -- 3.4.2. Beam in traction-compression -- 3.4.2.1. Mesh. -- 3.4.2.2. Shape functions -- 3.4.2.3. Element mass and stiffness matrices -- 3.4.2.4. Equivalent nodal external loading -- 3.4.2.5. Assembling the finite element model -- 3.4.2.6. Boundary conditions -- 3.4.2.7. Elastic supports and penalty method -- 3.4.3. Assembling non-coaxial beams -- 3.4.3.1. The stiffness and mass matrices of a beam element for bending -- 3.4.3.2. Stiffness matrix combining bending and axial modes of deformation. -- 3.4.3.3. Assembling the finite element model of the whole structure -- 3.4.3.4. Transverse load resisted by string and bending stresses in a roof truss. -- 3.4.4. Saving DOF when modelling deformable solids -- Chapter 4. Vibration modes of straight beams and modal analysis methods -- 4.1. Introduction -- 4.2. Natural modes of vibration of straight beams -- 4.2.1. Travelling waves of simplified models -- 4.2.1.1. Longitudinal waves -- 4.2.1.2. Flexure waves -- 4.2.2. Standing waves,or natural modes of vibration -- 4.2.2.1. Longitudinal modes. -- 4.2.2.2. Torsion modes. -- 4.2.2.3. Flexure (or bending)modes.

4.2.2.4. Bending coupled with shear modes -- 4.2.3. Rayleigh 's quotient -- 4.2.3.1. Bending of a beam with an attached concentrated mass. -- 4.2.3.2. Beam on elastic foundation -- 4.2.4. Finite element approximation. -- 4.2.4.1. Longitudinal modes. -- 4.2.4.2. Bending modes. -- 4.2.5. Bending modes of an axially preloaded beam -- 4.2.5.1. Natural modes of vibration -- 4.2.5.2. Static buckling analysis. -- 4.3. Modal projection methods -- 4.3.1. Equations of motion projected onto a modal basis -- 4.3.2. Deterministic excitations. -- 4.3.2.1. Separable space and time excitation -- 4.3.2.2. Non-separable space and time excitation -- 4.3.3. Truncation of the modal basis -- 4.3.3.1. Criterion based on the mode shapes -- 4.3.3.2. Spectral criterion -- 4.3.4. Stresses and convergence rate of modal series -- 4.4. Substructuring method -- 4.4.1. Additional stiffnesses -- 4.4.1.1. Beam in traction-compression with an end spring -- 4.4.1.2. Truncation stiffness for a free-free modal basis -- 4.4.1.3. Bending modes of an axially prestressed beam -- 4.4.2. Additional inertia -- 4.4.3. Substructures by using modal projection. -- 4.4.3.1. Basic ideas of the method -- 4.4.3.2. Vibration modes of an assembly of two beams linked by a spring -- 4.4.3.3. Multispan beams -- 4.4.4. Nonlinear connecting elements -- 4.4.4.1. Axial impact of a beam on a rigid wall -- 4.4.4.2. Beam motion initiated by a local impulse followed by an impact on a rigid wall -- 4.4.4.3. Elastic collision between two beams -- Chapter 5. Plates:in-plane motion -- 5.1. Introduction -- 5.1.1. Plate geometry -- 5.1.2. Incidence of plate geometry on the mechanical response -- 5.2. Kirchhoff -Love model -- 5.2.1. Love simplifications. -- 5.2.2. Degrees of freedom and global displacements -- 5.2.3. Membrane displacements,strains and stresses. -- 5.2.3.1. Global and local displacements.

5.2.3.2. Global and local strains.
Abstract:
The modelling of mechanical systems provides engineers and students with the methods to model and understand mechanical systems by using both mathematical and computer-based tools. Written by an eminent authority in the field, this is the second of four volumes which provide engineers with a comprehensive resource on this cornerstone mechanical engineering subject. Dealing with continuous systems, this book covers solid mechanics, beams, plates and shells. In a clear style and with a practical rather than theoretical approach, it shows how to model continuous systems in order to study vibration modes, motion and forces. Appendices give useful primers on aspects of the mathematics introduced in the book. Other volumes in the series cover discrete systems, fluid-structure interaction and flow-induced vibration. * Axisa is a world authority in the modelling of systems * Comprehensive coverage of mathematical techniques used to perform computer-based analytical studies and numerical simulations * A key reference for mechanical engineers, researchers and graduate students in this cornerstone subject.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: