
Salinity and Tides in Alluvial Estuaries.
Title:
Salinity and Tides in Alluvial Estuaries.
Author:
Savenije, H.H.G.
ISBN:
9780080461618
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (212 pages)
Contents:
Salinity and tides in alluvial estuaries -- Salinity and tides in alluvial estuaries -- Contents -- Preface -- Notation -- 1 Introduction: description and classification of alluvial estuaries -- 1.1 Importance of estuaries to mankind -- 1.2 Classification of estuaries -- 1.3 Estuary numbers -- 1.4 Alluvial estuaries and their characteristics -- 1.4.1 The shape of alluvial estuaries -- 1.4.2 Dominant mixing processes -- 1.4.3 How the tide propagates -- 1.4.4 How the salt intrudes -- 1.5 What will follow -- 2 Tide and estuary shape -- 2.1 Hydraulic equations -- 2.1.1 Basic equations -- 2.1.2 The seventh equation -- 2.1.3 The one-dimensional equations for depth and velocity -- 2.1.4 The effect of density differences and tide -- 2.2 The shape of alluvial estuaries -- 2.2.1 Classification on estuary shape -- 2.2.2 Assumptions on the shape of alluvial estuary in coastal plains The assumptions of an ideal estuary -- 2.2.3 Assumptions on estuary shape in short estuaries -- 2.3 Relating tide to shape -- 2.3.1 Why look for relations between tide and shape? -- 2.3.2 Theoretical derivations -- 3 Tidal dynamics -- 3.1 Tidal movement and amplification -- 3.1.1 Why is the tidal wave amplified or damped? -- 3.1.2 Derivation of the tidal damping equation -- 3.1.3 Application of the derived formula to observations -- 3.1.4 Conclusions -- 3.2 Tidal wave propagation -- 3.2.1 The relation between tidal damping and wave celerity -- 3.2.2 Theory of wave propagation -- 3.2.3 Empirical verification in the Schelde and Incomati estuaries -- 3.2.4 The wave celerity according to Mazure -- 3.2.5 Conclusion -- 3.3 Effect of river discharge and other higher order effects on tidal damping -- 3.3.1 Which higher order effects are important -- 3.3.2 Incorporating river discharge into the derivation of the Celerity equation.
3.3.3 Incorporating river discharge into the derivation of the Damping equation -- 3.3.4 Application to the Schelde-estuary -- 3.3.5 Conclusion -- 3.4 The influence of climate change and human interference on estuaries -- 4 Mixing in alluvial estuaries -- 4.1 Types of mixing, their relative importance, and interaction -- 4.2 Gravitational circulation -- 4.3 Mixing by the tide -- 4.4 Residual circulation through flood and ebb channels -- 4.5 The decomposition method and why it is not very useful -- 4.6 Longitudinal effective dispersion -- 4.7 Van den burgh's equation -- 4.7.1 The physical meaning of Van den Burgh's K -- 4.7.2 Correspondence with other methods -- 4.8 General equation for longitudinal dispersion -- 5 Salt intrusion in alluvial estuaries -- 5.1 Types of salt intrusion and shapes of salt intrusion curves -- 5.2 Salt balance equations -- 5.3 Influence of rainfall and evaporation -- 5.4 Time scales and conditions for steady state -- 5.5 Predictive model for steady state -- 5.5.1 Expressions for HWS, LWS, and TA -- 5.5.2 Empirical relations for the predictive model -- 5.5.3 The predictive model compared to other methods -- 5.6 Unsteady state model -- 5.6.1 System response time -- 5.6.2 Unsteady state dispersion -- 5.6.3 Application of the unsteady state model -- 5.7 Hypersaline estuaries -- 5.8 Concluding remarks -- 6 References -- Index.
Abstract:
The book describes an integrated theory that links estuary shape to tidal hydraulics, tidal mixing and salt intrusion. The shape of an alluvial estuary is characterised by exponentially varying width and the absence of bottom slope. This topography is closely related to tidal parameters, hydraulic parameters and parameters that describe 1-dimensional mixing and salt intrusion. Starting from the fundamental equations for conservation of mass and momentum, analytical equations are derived that relate the topography to tidal parameters (tidal excursion, phase lag, tidal damping, tidal amplification), wave celerity, lateral and vertical mixing and salt intrusion. The book presents a review of the state of the art, a comprehensive theoretical background and ample case illustrations from all over the world. It provides tools with which human interference in estuary dynamics can be described and predicted, resulting from, for instance: upstream fresh water abstraction, dredging, climate change or sea-level rise. In describing the interactions between tide, topography, water quality and river discharge, it provides useful information for hydraulic engineers, morphologists, ecologists and people concerned with water quality in alluvial estuaries. Although the book can be used as a text book, it is mainly a monograph aimed at graduate students and researchers. * Provides new integrated theory for tidal hydraulics, tidal mixing and salt intrusion in alluvial estuaries * Presents a consistent set of analytical equations to compute tidal movement, tidal mixing and salt intrusion, derived from the fundamental laws of conservation of mass and momentum * Serves as a practical guide with many illustrations of applications in real estuaries.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Added Author:
Electronic Access:
Click to View