Cover image for Statistical Mechanics of Solids.
Statistical Mechanics of Solids.
Title:
Statistical Mechanics of Solids.
Author:
Girifalco, Louis A.
ISBN:
9780198028116
Personal Author:
Physical Description:
1 online resource (536 pages)
Series:
Monographs on the Physics and Chemistry of Materials ; v.58

Monographs on the Physics and Chemistry of Materials
Contents:
Contents -- 1 The Basics of Thermodynamics -- 1.1 The existence of equilibrium and state functions -- 1.2 Empirical temperature scales -- 1.3 The ideal gas temperature -- 1.4 The mechanical equivalent of heat -- 1.5 Walls and the zeroth law of thermodynamics -- 1.6 Spontaneous, reversible, and irreversible processes -- 1.7 Work and the dependence of work on the path -- 1.8 The first law of thermodynamics -- 1.9 Heat capacity, energy, and enthalpy -- 1.10 The second law of thermodynamics and entropy -- 1.11 Free energies and equilibrium conditions -- 1.12 Thermodynamic potentials and Legendre transformations -- 1.13 Chemical potentials -- 1.14 Conditions of phase equilibria and stability -- 1.15 Euler's theorem and the Gibbs-Duhem equation -- 1.16 Reciprocity relations of Maxwell -- 1.17 Useful differential relations -- 1.18 Equations of state and heat capacity relations -- 1.19 Magnetic systems -- Exercises -- 2 Principles of Statistical Mechanics -- 2.1 Definitions for statistical mechanics -- 2.2 Thermodynamic state -- 2.3 Comparison of microscopic and macroscopic state -- 2.4 The relation between microscopic and macroscopic state -- 2.5 System and environment -- 2.6 Quantum states of macroscopic systems -- 2.7 Time averages -- 2.8 Ensembles -- 2.9 The canonical ensemble -- 2.10 The canonical most probable distribution -- 2.11 Summary of definitions of probabilities -- 2.12 The canonical ensemble and thermodynamics -- 2.13 Statistical entropy and the second law of thermodynamics -- 2.14 The semiclassical approximation -- 2.15 The grand canonical ensemble -- 2.16 The pressure ensemble -- 2.17 Fluctuations -- Exercises -- 3 Particle Statistics -- 3.1 Entropy and number of complexions -- 3.2 Particle distribution functions -- 3.3 Particle statistics and thermodynamics -- 3.4 The ideal gas.

3.5 Particle statistics from the grand canonical ensemble -- 3.6 Representations of the density of states -- 3.7 Maxwell's velocity distribution -- 3.8 Two-dimensional ideal gas -- 3.9 Independent particles and subsystems -- Exercises -- 4 The Harmonic Crystal -- 4.1 The harmonic model -- 4.2 The monatomic linear chain and normal mode analysis -- 4.3 Partition function and free energy of the harmonic crystal -- 4.4 General heat capacity equations -- 4.5 The Einstein model -- 4.6 Superposition of Einstein oscillators -- 4.7 The Debye model -- 4.8 Debye energy and heat capacity -- 4.9 Relation between Einstein and Debye characteristic temperatures -- 4.10 Comparison of Debye theory with experiment -- 4.11 The phonon gas -- Exercises -- 5 Anharmonic Properties and the Equation of State -- 5.1 The crystal potential energy -- 5.2 Anharmonic properties and the Gruneisen assumption -- 5.3 Heat capacity at constant pressure -- 5.4 Debye theory and the Gruneisen assumption -- 5.5 Vibrational anharmonicity -- 5.6 Theory of the Gruneisen parameter -- Exercises -- 6 Free Electron Theory in Metals and Semiconductors -- 6.1 Free electrons in metals -- 6.2 Statistics for the electron gas -- 6.3 The distribution of free electrons -- 6.4 Thermodynamic properties of the free electron gas -- 6.5 Electronic heat capacity in metals -- 6.6 Equation of state of the free electron gas -- 6.7 Thomas-Fermi theory -- 6.8 Review of results of band theory -- 6.9 Impurity levels in semiconductors -- 6.10 Electron distribution in intrinsic semiconductors -- 6.11 Electron statistics in extrinsic semiconductors -- 6.12 Mass action laws for extrinsic semiconductors -- 6.13 Relation between Fermi level and impurity concentration -- Exercises -- 7 Statistical-Kinetic Theory of Electron Transport -- 7.1 Free electrons in external fields and temperature gradients.

7.2 The statistical-kinetic method -- 7.3 The Boltzmann transport equation -- 7.4 Formal flux equations -- 7.5 The electrical conductivity of metals -- 7.6 Thermal conductivity and the Wiedemann-Franz law -- 7.7 The isothermal Hall effect -- 7.8 Electrical conductivity in semiconductors -- Exercises -- 8 Order-Disorder Alloys -- 8.1 Order-disorder structures -- 8.2 The order-disorder transition -- 8.3 Description of the degree of order -- 8.4 The Order-disorder partition function -- 8.5 The Kirkwood method -- 8.6 The Bragg-Williams approximation -- 8.7 The second moment approximation -- 8.8 The quasi-chemical approximation -- 8.9 Comparison with experiment -- Exercises -- 9 Magnetic Order -- 9.1 Magnetic response -- 9.2 Paramagnetism of independent moments -- 9.3 Paramagnetism of free electrons -- 9.4 Ferromagnetism: mean field theory -- 9.5 The Ising model for ferromagnetism -- 9.6 Antiferromagnetism: mean field theory -- 9.7 Spin waves -- Exercises -- 10 Phase Equilibria -- 10.1 Phase equilibria in one-component systems -- 10.2 The van der Waals model -- 10.3 Sublimation -- 10.4 The liquid state -- 10.5 Communal entropy -- 10.6 Vibrations and melting -- 10.7 Melting -- 10.8 Regular solution theory of binary alloys -- Exercises -- 11 Critical Exponents and the Renormalization Group -- 11.1 Equivalent models -- 11.2 Critical points -- 11.3 Landau theory and the Kirkwood expansion -- 11.4 Fluctuations and correlation length -- 11.5 The monatomic Ising chain -- 11.6 Renormalization of the one-dimensional Ising model -- 11.7 The Kadanoff construction -- 11.8 The renormalization group -- 11.9 Scaling and the renormalization group -- 11.10 Numbers -- Exercises -- 12 Surfaces and Interfaces -- 12.1 Basic concepts -- 12.2 Thermodynamics of interfaces -- 12.3 Thermodynamics of adsorption on solid surfaces -- 12.4 Adhesion and cohesion.

12.5 Critical point and critical exponent for surface tension -- 12.6 Monolayer adsorption: Langmuir isotherm -- 12.7 Monolayer adsorption: mobile layer -- 12.8 Multilayer adsorption: BET isotherm -- 12.9 Segregation of impurities at interfaces -- Exercises -- 13 The Theory of Random Flight -- 13.1 Introduction -- 13.2 The mean square total displacement -- 13.3 Random flight on a lattice -- 13.4 Reflecting and absorbing barriers -- 13.5 The Markoff method -- 13.6 The general solution -- 13.7 Self-similarity -- 13.8 The diffusion equation from random flights -- Exercises -- 14 Linear Polymer Chains -- 14.1 Polymer chains and random flight -- 14.2 Persistence length -- 14.3 Chain length fluctuations -- 14.4 Density in a polymer chain -- 14.5 Partition function of a polymer chain -- 14.6 Excluded volume -- 14.7 The force ensemble and chain elasticity -- 14.8 Elastomers -- 14.9 The Flory correction -- 14.10 Solutions and gels -- Exercises -- 15 Vacancies and Interstitials in Monatomic Crystals -- 15.1 Choice of ensemble -- 15.2 The vacancy concentration -- 15.3 The crystal free energy -- 15.4 Vacancies and thermodynamic functions -- 15.5 The vacancy formation functions -- 15.6 Vacancies, divacancies, and interstitials -- 15.7 Some numerical results -- Exercises -- 16 Point Defects in Dilute Alloys -- 16.1 General comments -- 16.2 The statistical count for substitutional defects -- 16.3 Defect concentration formulas for substitutional defects -- 16.4 Internal equilibria for substitutional defects -- 16.5 Quenched-in resistivity of dilute binary alloys -- 16.6 Some general theory -- 16.7 Thermodynamics of the dilute alloy -- Exercises -- 17 Diffusion in Simple Crystals -- 17.1 The empirical laws of diffusion -- 17.2 Transition probabilities and Fick's laws -- 17.3 Atomic jumps and the diffusion coefficient -- 17.4 The jump frequency in one dimension.

17.5 Many-body theory of the jump frequency -- 17.6 The diffusion coefficient -- Exercises -- Appendix 1 Combinatorial Problems in Statistical Mechanics -- Appendix 2 The Method of Undetermined Multipliers -- Appendix 3 Stirling's Approximation -- Appendix 4 Sums and integrals -- Appendix 5 Fermi Integrals -- Appendix 6 Kirkwood's Second Moment -- Appendix 7 The Generalized Lattice Gas -- Appendix 8 Dyadics and Crystal Symmetry -- Additional Readings -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- Y -- Z.
Abstract:
This monograph, suitable for use as an advanced text, presents the statistical mechanics of solids from the perspective of the material properties of the solid state.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: