Cover image for Statistical Parametric Mapping : The Analysis of Functional Brain Images.
Statistical Parametric Mapping : The Analysis of Functional Brain Images.
Title:
Statistical Parametric Mapping : The Analysis of Functional Brain Images.
Author:
Penny, William D.
ISBN:
9780080466507
Personal Author:
Physical Description:
1 online resource (689 pages)
Contents:
Front Cover -- Statistical Parametric Mapping -- Copyright Page -- Table of Contents -- Acknowledgements -- Part 1 Introduction -- Chapter 1 A short history of SPM -- INTRODUCTION -- THE PET YEARS -- THE fMRI YEARS -- THE MEG-EEG YEARS -- REFERENCES -- Chapter 2 Statistical parametric mapping -- INTRODUCTION -- SPATIAL TRANSFORMS AND COMPUTATIONAL ANATOMY -- STATISTICAL PARAMETRIC MAPPING AND THE GENERAL LINEAR MODEL -- TOPOLOGICAL INFERENCE AND THE THEORY OF RANDOM FIELDS -- EXPERIMENTAL AND MODEL DESIGN -- INFERENCE IN HIERARCHICAL MODELS -- CONCLUSION -- REFERENCES -- Chapter 3 Modelling brain responses -- INTRODUCTION -- ANATOMICAL MODELS -- STATISTICAL MODELS -- MODELS OF FUNCTIONAL INTEGRATION -- CONCLUSION -- REFERENCES -- Part 2 Computational anatomy -- Chapter 4 Rigid Body Registration -- INTRODUCTION -- RE-SAMPLING IMAGES -- RIGID BODY TRANSFORMATIONS -- WITHIN-MODALITY RIGID REGISTRATION -- BETWEEN-MODALITY RIGID REGISTRATION -- REFERENCES -- Chapter 5 Non-linear Registration -- INTRODUCTION -- OBJECTIVE FUNCTIONS -- LARGE DEFORMATION APPROACHES -- ESTIMATING THE MAPPINGS -- SPATIAL NORMALIZATION IN THE SPM SOFTWARE -- EVALUATION STRATEGIES -- REFERENCES -- Chapter 6 Segmentation -- INTRODUCTION -- THE OBJECTIVE FUNCTION -- OPTIMIZATION -- REFERENCES -- Chapter 7 Voxel-Based Morphometry -- INTRODUCTION -- PREPARING THE DATA -- STATISTICAL MODELLING AND INFERENCE -- REFERENCES -- Part 3 General linear models -- Chapter 8 The General Linear Model -- INTRODUCTION -- THE GENERAL LINEAR MODEL -- INFERENCE -- PET AND BASIC MODELS -- fMRI MODELS -- APPENDIX 8.1 THE AUTOREGRESSIVE MODEL OF ORDER 1 PLUS WHITE NOISE -- APPENDIX 8.2 THE SATTERTHWAITE APPROXIMATION -- REFERENCES -- Chapter 9 Contrasts and Classical Inference -- INTRODUCTION -- CONSTRUCTING MODELS What should be included in the model? -- CONSTRUCTING AND TESTING CONTRASTS.

CONSTRUCTING AND TESTING F-CONTRASTS -- CORRELATION BETWEEN REGRESSORS -- DESIGN COMPLEXITY -- SUMMARY -- APPENDIX 9.1 NOTATION -- APPENDIX 9.2 SUBSPACES -- APPENDIX 9.3 ORTHOGONAL PROJECTION -- REFERENCES -- Chaper 10 Covariance Components -- INTRODUCTION -- SOME MATHEMATICAL EQUIVALENCES -- ESTIMATING COVARIANCE COMPONENTS -- CONCLUSION -- REFERENCES -- Chapter 11 Hierarchical Models -- INTRODUCTION -- TWO-LEVEL MODELS -- PARAMETRIC EMPIRICAL BAYES -- NUMERICAL EXAMPLE -- BELIEF PROPAGATION -- DISCUSSION -- REFERENCES -- Chapter 12 Random Effects Analysis -- INTRODUCTION -- RANDOM EFFECTS ANALYSIS -- FIXED EFFECTS ANALYSIS -- PARAMETRIC EMPIRICAL BAYES -- PET DATA EXAMPLE -- fMRI DATA EXAMPLE -- DISCUSSION -- APPENDIX 12.1 EXPECTATIONS AND TRANSFORMATIONS -- REFERENCES -- Chapter 13 Analysis of Variance -- INTRODUCTION -- ONE-WAY BETWEEN-SUBJECT ANOVA -- ONE-WAY WITHIN-SUBJECT ANOVA -- TWO-WAY WITHIN-SUBJECT ANOVAs -- GENERALIZATION TO M-WAY ANOVAs -- fMRI BASIS FUNCTIONS -- DISCUSSION -- APPENDIX 13.1 THE KRONECKER PRODUCT -- APPENDIX 13.2 WITHIN-SUBJECT MODELS -- REFERENCES -- Chapter 14 Convolution Models for fMRI -- INTRODUCTION -- THE HAEMODYNAMIC RESPONSE FUNCTION (HRF) -- TEMPORAL BASIS FUNCTIONS -- TEMPORAL FILTERING AND AUTOCORRELATION -- NON-LINEAR CONVOLUTION MODELS -- A WORKED EXAMPLE -- REFERENCES -- Chapter 15 Efficient Experimental Design for fMRI -- INTRODUCTION -- TAXONOMY OF EXPERIMENTAL DESIGN -- EVENT-RELATED fMRI, AND RANDOMIZED VERSUS BLOCKED DESIGNS -- EFFICIENCY AND OPTIMIZATION OF fMRI DESIGNS -- COMMON QUESTIONS What is the minimum number of events I need? -- REFERENCES -- Chapter 16 Hierarchical models for EEG and MEG -- INTRODUCTION -- SPATIAL MODELS -- TEMPORAL MODELS -- HYPOTHESIS TESTING WITH HIERARCHICAL MODELS -- SUMMARY -- REFERENCES -- Part 4 Classical inference -- Chapter 17 Parametric procedures -- INTRODUCTION.

THE BONFERRONI CORRECTION -- RANDOM FIELD THEORY -- DISCUSSION -- REFERENCES -- Chapter 18 Random Field Theory -- INTRODUCTION -- THE MAXIMUM TEST STATISTIC -- THE MAXIMUM SPATIAL EXTENT OF THE TEST STATISTIC -- SEARCHING IN SMALL REGIONS -- ESTIMATING THE FWHM -- FALSE DISCOVERY RATE -- CONCLUSION -- REFERENCES -- Chapter 19 Topological Inference -- INTRODUCTION -- TOPOLOGICAL INFERENCE -- THEORY AND DISTRIBUTIONAL APPROXIMATIONS -- POWER ANALYSES -- SUMMARY -- REFERENCES -- Chapter 20 False Discovery Rate procedures -- INTRODUCTION -- MULTIPLE TESTING DEFINITIONS -- FDR METHODS -- EXAMPLES AND DEMONSTRATIONS -- CONCLUSION -- REFERENCES -- Chapter 21 Non-parametric procedures -- INTRODUCTION -- PERMUTATION TESTS -- WORKED EXAMPLES -- CONCLUSIONS -- REFERENCES -- Part 5 Bayesian inference -- Chapter 22 Empirical Bayes and hierarchical models -- INTRODUCTION -- THEORETICAL BACKGROUND -- EM AND COVARIANCE COMPONENT ESTIMATION -- REFERENCES -- Chapter 23 Posterior probability maps -- INTRODUCTION -- THEORY -- EMPIRICAL DEMONSTRATIONS -- CONCLUSION -- REFERENCES -- Chapter 24 Variational Bayes -- INTRODUCTION -- THEORY -- EXAMPLES -- DISCUSSION -- APPENDIX 24.1 -- REFERENCES -- Chapter 25 Spatio-temporal models for fMRI -- INTRODUCTION -- THEORY -- RESULTS -- DISCUSSION -- APPENDIX 25.1 -- REFERENCES -- Chapter 26 Spatio-temporal models for EEG -- INTRODUCTION -- THEORY -- PCA -- RESULTS -- DISCUSSION -- REFERENCES -- Part 6 Biophysical models -- Chapter 27 Forward models for fMRI -- INTRODUCTION -- NON-LINEAR EVOKED RESPONSES -- THE HAEMODYNAMIC MODEL -- KERNEL ESTIMATION -- RESULTS AND DISCUSSION -- DISCUSSION -- CONCLUSION -- REFERENCES -- Chapter 28 Forward models for EEG -- INTRODUCTION -- ANALYTICAL FORMULATION Maxwell's equations -- NUMERICAL SOLUTION OF THE BEM EQUATION -- ANALYTIC SOLUTION OF THE BEM EQUATION -- DISCUSSION -- REFERENCES.

Chapter 29 Bayesian inversion of EEG models -- INTRODUCTION -- THE BAYESIAN FORMULATION OF CLASSICAL REGULARIZATION -- A HIERARCHICAL OR PARAMETRIC EMPIRICAL BAYES APPROACH -- RESTRICTED MAXIMUM LIKELIHOOD -- APPLICATION TO SYNTHETIC MEG DATA -- APPLICATION TO SYNTHETIC EEG DATA -- CONCLUSION -- APPENDIX 29.1 THE L-CURVE APPROACH -- REFERENCES -- Chapter 30 Bayesian inversion for induced responses -- INTRODUCTION -- THE BASIC ReML APPROACH TO DISTRIBUTED SOURCE RECONSTRUCTION -- A TEMPORALLY INFORMED SCHEME -- ESTIMATING RESPONSE ENERGY -- AVERAGING OVER TRIALS -- SOME EXAMPLES -- DISCUSSION -- REFERENCES -- Chapter 31 Neuronal models of ensemble dynamics -- INTRODUCTION -- THEORY -- ILLUSTRATIVE APPLICATIONS -- CONCLUSION -- APPENDIX 31.1 NUMERICAL SOLUTION OF FOKKER-PLANCK EQUATION -- REFERENCES -- Chapter 32 Neuronal models of energetics -- INTRODUCTION -- EEG AND fMRI INTEGRATION -- A HEURISTIC FOR EEG-fMRI INTEGRATION -- EMPIRICAL EVIDENCE -- SUMMARY -- REFERENCES -- Chapter 33 Neuronal models of EEG and MEG -- INTRODUCTION -- NEURAL-MASS MODELS -- MODELLING CORTICAL SOURCES -- HIERARCHICAL MODELS OF CORTICAL NETWORKS -- MECHANISMS OF ERP GENERATION -- PHASE-RESETTING AND THE ERP -- ONGOING AND EVENT-RELATED ACTIVITY -- INDUCED RESPONSES AND ERPs -- DISCUSSION -- CONCLUSION -- REFERENCES -- Chapter 34 Bayesian inversion of dynamic models -- INTRODUCTION -- A HAEMODYNAMIC MODEL -- PRIORS -- SYSTEM IDENTIFICATION -- EMPIRICAL ILLUSTRATIONS -- CONCLUSION -- REFERENCES -- Chapter 35 Bayesian model selection and averaging -- INTRODUCTION -- CONDITIONAL PARAMETER INFERENCE -- MODEL INFERENCE -- MODEL AVERAGING -- DYNAMIC CAUSAL MODELS -- SOURCE RECONSTRUCTION -- MULTIPLE CONSTRAINTS -- MODEL AVERAGING -- DISCUSSION -- REFERENCES -- Part 7 Connectivity -- Chapter 36 Functional integration -- INTRODUCTION -- FUNCTIONAL SPECIALIZATION AND INTEGRATION.

LEARNING AND INFERENCE IN THE BRAIN -- IMPLICATIONS FOR CORTICAL INFRASTRUCTURE AND PLASTICITY -- ASSESSING FUNCTIONAL ARCHITECTURES WITH BRAIN IMAGING -- FUNCTIONAL INTEGRATION AND NEUROPSYCHOLOGY -- CONCLUSION -- REFERENCES -- Chapter 37 Functional connectivity: eigenimages and multivariate analyses -- INTRODUCTION -- EIGENIMAGES, MULTIDIMENSIONAL SCALING AND OTHER DEVICES -- NON-LINEAR PRINCIPAL AND INDEPENDENT COMPONENT ANALYSIS (PCA AND ICA) -- MANCOVA AND CANONICAL IMAGE ANALYSES -- REFERENCES -- Chapter 38 Effective Connectivity -- INTRODUCTION -- IDENTIFICATION OF DYNAMIC SYSTEMS -- STATIC MODELS -- DYNAMIC MODELS -- CONCLUSION -- REFERENCES -- Chapter 39 Non-linear coupling and kernels -- INTRODUCTION -- NEURONAL TRANSIENTS -- NEURONAL CODES -- EVIDENCE FOR NON-LINEAR COUPLING -- THE NEURAL BASIS OF NON-LINEAR COUPLING -- CONCLUSION -- REFERENCES -- Chapter 40 Multivariate autoregressive models -- INTRODUCTION -- THEORY -- APPLICATION -- DISCUSSION -- APPENDIX 40.1 -- REFERENCES -- Chapter 41 Dynamic Causal Models for fMRI -- INTRODUCTION -- THEORY -- FACE VALIDITY - SIMULATIONS -- PREDICTIVE VALIDITY - AN ANALYSIS OF SINGLE WORD PROCESSING -- CONSTRUCT VALIDITY - AN ANALYSIS OF ATTENTIONAL EFFECTS ON CONNECTIONS -- CONCLUSION -- REFERENCES -- Chapter 42 Dynamic causal models for EEG -- INTRODUCTION -- THEORY -- BAYESIAN INFERENCE AND MODEL COMPARISON -- EMPIRICAL STUDIES -- CONCLUSION -- SUMMARY -- APPENDIX -- REFERENCES -- Chapter 43 Dynamic Causal Models and Bayesian selection -- INTRODUCTION -- INTER-HEMISPHERIC INTEGRATION IN THE VENTRAL STREAM -- DISCUSSION -- REFERENCES -- Appendices -- Appendix 1 Linear models and inference -- INTRODUCTION -- INFORMATION THEORY AND DEPENDENCY -- OTHER PERSPECTIVES -- SUMMARY -- REFERENCES -- Appendix 2 Dynamical systems -- INTRODUCTION -- EFFECTIVE CONNECTIVITY -- INPUT-OUTPUT MODELS.

INPUT-STATE-OUTPUT MODELS.
Abstract:
In an age where the amount of data collected from brain imaging is increasing constantly, it is of critical importance to analyse those data within an accepted framework to ensure proper integration and comparison of the information collected. This book describes the ideas and procedures that underlie the analysis of signals produced by the brain. The aim is to understand how the brain works, in terms of its functional architecture and dynamics. This book provides the background and methodology for the analysis of all types of brain imaging data, from functional magnetic resonance imaging to magnetoencephalography. Critically, Statistical Parametric Mapping provides a widely accepted conceptual framework which allows treatment of all these different modalities. This rests on an understanding of the brain's functional anatomy and the way that measured signals are caused experimentally. The book takes the reader from the basic concepts underlying the analysis of neuroimaging data to cutting edge approaches that would be difficult to find in any other source. Critically, the material is presented in an incremental way so that the reader can understand the precedents for each new development. This book will be particularly useful to neuroscientists engaged in any form of brain mapping; who have to contend with the real-world problems of data analysis and understanding the techniques they are using. It is primarily a scientific treatment and a didactic introduction to the analysis of brain imaging data. It can be used as both a textbook for students and scientists starting to use the techniques, as well as a reference for practicing neuroscientists. The book also serves as a companion to the software packages that have been developed for brain imaging data analysis. * An essential reference and companion for users of the SPM software * Provides a

complete description of the concepts and procedures entailed by the analysis of brain images * Offers full didactic treatment of the basic mathematics behind the analysis of brain imaging data * Stands as a compendium of all the advances in neuroimaging data analysis over the past decade * Adopts an easy to understand and incremental approach that takes the reader from basic statistics to state of the art approaches such as Variational Bayes * Structured treatment of data analysis issues that links different modalities and models * Includes a series of appendices and tutorial-style chapters that makes even the most sophisticated approaches accessible.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: