
Digital Modulation Techniques.
Title:
Digital Modulation Techniques.
Author:
Xiong, Fuqin.
ISBN:
9781580538640
Personal Author:
Physical Description:
1 online resource (1029 pages)
Contents:
Digital Modulation Techniques Second Edition -- Contents -- Preface -- Chapter 1 Introduction -- 1.2 COMMUNICATION CHANNELS -- 1.2.1 AdditiveWhite Gaussian Noise Channel -- 1.2.2 Bandlimited Channel -- 1.2.3 Fading Channel -- 1.3 BASIC MODULATION METHODS -- 1.4 CRITERIA OF CHOOSINGMODULATION SCHEMES -- 1.4.1 Power Efficiency -- 1.4.2 Bandwidth Efficiency -- 1.4.3 System Complexity -- 1.5 OVERVIEWOF DIGITAL MODULATION SCHEMES AND COMPARISON -- References -- Selected Bibliography -- Chapter 2 Baseband Modulation (Line Codes) -- 2.1 DIFFERENTIAL CODING -- 2.2 DESCRIPTION OF LINE CODES -- 2.2.1 Nonreturn-to-Zero Codes -- 2.2.2 Return-to-Zero Codes -- 2.2.3 Pseudoternary Codes (Including AMI) -- 2.2.4 Biphase Codes (Including Manchester) -- 2.2.5 Delay Modulation (Miller Code) -- 2.3 POWER SPECTRAL DENSITY OF LINE CODES -- 2.3.1 PSD of Nonreturn-to-Zero Codes -- 2.3.2 PSD of Return-to-Zero Codes -- 2.3.3 PSD of Pseudoternary Codes -- 2.3.4 PSD of Biphase Codes -- 2.3.5 PSD of Delay Modulation -- 2.4 BIT ERROR RATE OF LINE CODES -- 2.4.1 BER of Binary Codes -- 2.4.2 BER of Pseudoternary Codes -- 2.4.3 BER of Biphase Codes -- 2.4.4 BER of Delay Modulation -- 2.5 SUBSTITUTION LINE CODES -- 2.5.1 Binary N -Zero Substitution Codes -- 2.5.2 High Density Bipolar n Codes -- 2.6 BLOCK LINE CODES -- 2.6.1 Coded Mark Inversion Codes -- 2.6.2 Differential Mode Inversion Codes -- 2.6.3 mBnB Codes -- 2.6.3.1 Carter Code -- 2.6.3.2 Griffiths Code -- 2.6.3.3 PAM-PPMCode -- 2.6.3.4 2B3B dc-Constrained Code -- 2.6.4 mB1C Codes -- 2.6.5 DmB1MCodes -- 2.6.6 PFmB(m+1)B Codes -- 2.6.7 kBnT Codes -- 2.6.7.1 4B3T Code -- 2.6.7.2 MS43 Code -- 2.6.7.3 6B4T Code -- 2.7 PULSE TIME MODULATION -- 2.7.1 Formats of Pulse Time Modulation -- 2.7.2 Spectra of Pulse TimeModulation -- 2.7.3 Performance of Pulse TimeModulation -- 2.8 SUMMARY -- References -- Selected Bibliography.
Chapter 3 Frequency Shift Keying -- 3.1 BINARY FSK -- 3.1.1 Binary FSK Signal and Modulator -- 3.1.2 Power Spectral Density -- 3 .2 COHE RENT DEMODULATI ON AND E RRO R PE RFO RMANCE -- 3.3 NONCOHERENT DEMODULATION AND ERROR PERFORMANCE -- 3.4 M-ARY FSK -- 3.4.1 MFSK Signal and Power Spectral Density -- 3.4.2 Modulator, Demodulator, and Error Performance -- 3.5 DEMODULATION USING DISCRIMINATOR -- 3.6 SYNCHRONIZATION -- 3.7 SUMMARY -- References -- Selected Bibliography -- Chapter 4 Phase Shift Keying -- 4.1 BINARY PSK -- 4.2 DIFFERENTIAL BPSK -- 4.3 M-ARY PSK -- 4.4 PSD OF MPSK -- 4.5 DIFFERENTIAL MPSK -- 4.6 QUADRATURE PSK -- 4.7 DIFFERENTIAL QPSK -- 4.8 OFFSET QPSK -- 4.9 π/4-QPSK -- 4.10 SYNCHRONIZATION -- 4.10.1 Carrier Recovery -- 4.10.2 Clock Recovery -- 4.10.3 Effects of Phase and Timing Error -- 4.11 SUMMARY -- References -- Selected Bibliography -- Chapter 5 Minimum Shift Keying and MSK-Type Modulations -- 5.1 DESCRIPTION OF MSK -- 5.1.1 MSK Viewed as a SinusoidalWeighted OQPSK -- 5.1.2 MSK Viewed as a Special Case of CPFSK -- 5.2 POWER SPECTRUM AND BANDWIDTH -- 5.2.1 Power Spectral Density of MSK -- 5.2.2 Bandwidth of MSK and Comparison with PSK -- 5.3 MODULATOR -- 5.4 DEMODULATOR -- 5.5 SYNCHRONIZATION -- 5.6 ERROR PROBABILITY -- 5.7 SERIAL MSK -- 5.7.1 SMSK Description -- 5.7.2 SMSKModulator -- 5.7.3 SMSK Demodulator -- 5.7.4 Conversion and Matched Filter Implementation -- 5.7.5 Synchronization of SMSK -- 5.8 MSK-TYPE MODULATION SCHEMES -- 5.9 SINUSOIDAL FREQUENCY SHIFT KEYING -- 5.10 SIMON'S CLASS OF SYMBOL-SHAPING PULSES -- 5.11 RABZEL AND PASUPATHY'S SYMBOL-SHAPING PULSES -- 5.12 BAZIN'S CLASS OF SYMBOL-SHAPING PULSES -- 5.13 MSK-TYPE SIGNAL'S SPECTRAL MAIN LOBE -- 5.14 SUMMARY -- References -- Selected Bibliography -- Chapter 6 Continuous Phase Modulation -- 6.1 DESCRIPTION OF CPM -- 6.1.1 Various Modulation Pulse Shapes.
6.1.1.1 Rectangular (LREC), CPFSK, and MSK -- 6.1.1.2 Raised Cosine (LRC) -- 6.1.1.3 Spectrally Raised Cosine (LSRC) -- 6.1.1.4 Tamed Frequency Modulation (TFM) -- 6.1.1.5 Gaussian MSK (GMSK) -- 6.1.2 Phases and State of the CPM Signal -- 6.1.3 Phase Tree and Trellis and State Trellis -- 6.2 POWER SPECTRAL DENSITY -- 6.2.1 Steps for Calculating PSDs for General CPM Signals -- 6.2.2 Effects of Pulse Shape, Modulation Index, and A Priori Distribution -- 6.2.3 PSD of CPFSK -- 6.3 MLSD FOR CPM AND ERROR PROBABILITY -- 6.3.1 Error Probability and Euclidean Distance -- 6.3.2 Comparison of Minimum Distances -- 6.4 MODULATOR -- 6.4.1 Quadrature Modulator -- 6.4.2 Serial Modulator -- 6.4.2.1 PLL Modulator -- 6.4.2.2 BPF-Limiter Modulator -- 6.4.3 All-Digital Modulator -- 6.5 DEMODULATOR -- 6.5.1 Optimum ML Coherent Demodulator -- 6.5.2 Optimum ML Noncoherent Demodulator -- 6.5.3 Viterbi Demodulator -- 6.5.4 Reduced-Complexity Viterbi Demodulator -- 6.5.5 Reduction of the Number of Filters for LREC CPM -- 6.5.6 ML Block Detection of Noncoherent CPM -- 6.5.7 MSK-Type Demodulator -- 6.5.8 Differential and Discriminator Demodulator -- 6.5.9 Other Types of Demodulators -- 6.6 SYNCHRONIZATION -- 6.6.1 MSK-Type Synchronizer -- 6.6.2 Squaring Loop and Fourth-Power Loop Synchronizers -- 6.6.3 Other Types of Synchronizers -- 6.7 GAUSSIAN MINIMUM SHIFT KEYING (GMSK) -- 6.8 SUMMARY -- References -- Chapter 7 Multi-h Continuous Phase Modulation -- 7.1 MHPM SIGNAL, PHASE TREE, AND TRELLIS -- 7.2 POWER SPECTRAL DENSITY -- 7.3 DISTANCE PROPERTIES AND ERROR PROBABILITY -- 7.4 MODULATOR -- 7.5 DEMODULATOR AND SYNCHRONIZATION -- 7.5.1 A Simple ML Demodulator for Multi-h Binary CPFSK -- 7.5.2 Joint Demodulation and Carrier Synchronization of Multi-h CPFSK -- 7.5.3 Joint Carrier Phase Tracking and Data Detection of Multi-h CPFSK.
7.5.4 Joint Demodulation, Carrier Synchronization, and Symbol Synchronization of M-ary Multi-h CPFSK -- 7.5.5 Synchronization of MHPM -- 7.6 IMPROVED MHPM SCHEMES -- 7.6.1 MHPM with Asymmetrical Modulation Indexes -- 7.6.2 Multi-T Realization of Multi-h Phase Codes -- 7.6.3 Correlatively Encoded Multi-h Signaling Technique -- 7.6.4 Nonlinear Multi-h CPFSK -- 7.7 SUMMARY -- APPENDIX 7A ORTHONORMAL BASE FUNCTIONS -- References -- Selected Bibliography -- Chapter 8 Amplitude Shift Keying -- 8.1 PULSE AMPLITUDE MODULATION -- 8.1.1 Power Spectral Density -- 8.1.2 Optimum Detection and Error Probability -- 8.2 BIPOLAR SYMMETRICAL MASK -- 8.2.1 Power Spectral Density -- 8.2.2 Modulator and Demodulator -- 8.2.3 Error Probability -- 8.3 UNIPOLAR M-ARY ASK -- 8.3.1 Power Spectral Density -- 8.3.2 Modulator and Demodulator -- 8.3.3 Error Probability of Coherent Demodulation -- 8.3.4 Error Probability of Noncoherent Demodulation -- 8.4 BINARY ASK (ON-OFF KEYING) -- 8.5 COMPARING MASK WITH MPSK -- 8.6 SUMMARY -- References -- Selected Bibliography -- Chapter 9 Quadrature Amplitude Modulation -- 9.1 QAM SIGNAL DESCRIPTION -- 9.2 QAM CONSTELLATIONS -- 9.2.1 Square QAM -- 9.3 POWER SPECTRAL DENSITY -- 9.4 MODULATOR -- 9.5 DEMODULATOR -- 9.6 ERROR PROBABILITY -- 9.7 SYNCHRONIZATION -- 9.8 DIFFERENTIAL CODING IN QAM -- 9.9 SUMMARY -- APPENDIX 9A PROOF OF (9.39) -- References -- Selected Bibliography -- Chapter 10 Nonconstant-Envelope Bandwidth-Efficient Modulations -- 10.1 TWO-SYMBOL-PERIOD SCHEMES AND OPTIMUM DEMODULATOR -- 10.2 QUASI-BANDLIMITED MODULATION -- 10.3 QORC, SQORC, AND QOSRC -- 10.4 IJF-OQPSK AND TSI-OQPSK -- 10.5 SUPERPOSED-QAM -- 10.6 QUADRATURE QUADRATURE PSK -- 10.7 SUMMARY -- References -- Chapter 11 Modulations in Fading Channels, Equalization, and Diversity -- 11.1 FADING CHANNEL CHARACTERISTICS -- 11.1.1 Channel Characteristics.
11.1.2 Channel Classification -- 11.1.3 Fading Envelope Distributions -- 11.2 DIGITAL MODULATION IN SLOW, FLAT FADING CHANNELS -- 11.2.1 Rayleigh Fading Channel -- 11.2.2 Rician Fading Channel -- 11.3 DIGITAL MODULATION IN FREQUENCY SELECTIVE CHANNELS -- 11.4 π/4-DQPSK IN FADING CHANNELS -- 11.5 MHPM IN FADING CHANNELS -- 11.6 QAM IN FADING CHANNELS -- 11.6.1 Square QAM -- 11.6.2 Star QAM -- 11.7 OVERVIEWOF REMEDIAL MEASURES AGAINST CHANNEL IMPAIRMENTS -- 11.8 CHANNEL ESTIMATION AND CORRECTION -- 11.8.1 Pilot ToneMethods -- 11.8.2 Pilot Symbol Assisted Modulation (PSAM) -- 11.8.3 Decision Feedback Channel Estimation (DFCE) -- 11.9 EQUALIZATION -- 11.9.1 Linear Equalizers (LE) -- 11.9.1.1 Zero-Forcing LE -- 11.9.1.2 Minimum Mean Squared Error LE -- 11.9.2 Decision-Feedback Equalizers (DFE) -- 11.9.2.1 Zero-Forcing DFE -- 11.9.2.2 Minimum Mean Square Error DFE -- 11.10 DIVERSITY RECEPTION -- 11.10.1 Diversity Techniques -- 11.10.2 Combining Techniques -- 11.11 MIMOWIRELESS LINK -- 11.11.1 Capacity of MIMO Channel -- 11.11.1.1 Deterministic MIMO Channel -- 11.11.1.2 Frequency-Flat Slow Fading MIMO Channel -- 11.11.1.3 Frequency-Selective Slow Fading MIMO Channel -- 11.11.2 MIMO Signaling: Space-Time Coding and Spatial Multiplexing -- 11.11.2.1 Space-Time Coding -- 11.11.2.2 Spatial Multiplexing -- 11.12 SUMMARY -- APPENDIX 11A DERIVATION OF (11.80) -- References -- Selected Bibliography -- Chapter 12 Orthogonal Frequency Division Multiplexing -- 12.1 OFDM SIGNAL AND SPECTRUM -- 12.1.1 Baseband OFDMSignal -- 12.1.2 Bandpass OFDMSignal -- 12.2 OFDM MODULATOR AND DEMODULATOR -- 12.2.1 Analog OFDMModem -- 12.2.2 DFT-Based Digital OFDM Modem -- 12.3 REAL-OUTPUT DFT -- 12.4 FFT ALGORITHMS -- 12.5 PARTIAL FFT ALGORITHMS -- 12.5.1 The Pruned Partial FFT -- 12.5.2 Transform Decomposition -- 12.6 CYCLIC EXTENSION -- 12.6.1 Continuous-Time OFDM.
12.6.2 Discrete-Time OFDM.
Abstract:
IEEE Communications called the first edition ''extremely useful … likely to become a standard reference'' - and engineers worldwide have agreed! This newly revised and expanded edition of an Artech House classic builds on its success as far and away the most comprehensive guide to digital modulation techniques used in communications today. It devotes five new chapters to orthogonal frequency division multiplexing (OFDM), the hottest new bandwidth-efficient technique, and includes new modulations for optical communications. It also adds a fast-access comparison of all modulation schemes that will prove popular with engineers for any number of research and design tasks. Engineers get full details for every technique including operation principles, bit error probability, spectral characteristic, modulator, demodulator, synchronizer, performance in fading channels, comparison with other techniques, and applications. The book is packed with nearly 400 illustrations and includes new appendixes covering trigonometry identities, Fourier transform pairs and properties, and Q-function and error function values that provide even more time-saving reference help for today's busy engineer.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View