
Electromagnetics for High-Speed Analog and Digital Communication Circuits.
Title:
Electromagnetics for High-Speed Analog and Digital Communication Circuits.
Author:
Niknejad, Ali M.
ISBN:
9780511268618
Personal Author:
Physical Description:
1 online resource (466 pages)
Contents:
Cover -- Half-title -- Title -- Copyright -- Contents -- Preface -- Acknowledgments -- 1 Introduction -- 1.1 Motivation -- Technology enhancements -- Radio and wireless communication -- Computers and data communication -- Microwave systems -- Optical communication -- 1.2 System in Package (SiP): chip and package co-design -- 1.3 Future wireless communication systems -- 1.4 Circuits and electromagnetic simulation -- 2 Capacitance -- 2.1 Electrostatics review -- Perfect conductors -- Perfect conductor boundary conditions -- Poisson's equation (aka Fish equation) -- Dielectrics -- Review of dipoles -- Atomic dipole moment -- Ionic polarizability -- Total polarization -- Effective volume and surface charge -- Electric ux density vector -- Dielectric boundary conditions -- Normal D -- Tangential E -- 2.2 Capacitance -- Parallel plate capacitor -- Parallel plate capacitor with dielectric -- Capacitance matrix -- Electrostatic energy of a capacitor -- Energy of the electrostatic field -- 2.3 Non-linear capacitance -- Small-signal capacitance -- Large-signal capacitance -- Junction diode -- MOS capacitor -- Flat band -- Accumulation -- Depletion -- Inversion -- Threshold voltage -- MOS Q-V and C-V curves -- 2.4 References -- 3 Resistance -- 3.1 Ohm's Law -- Conductivity of a gas -- Conduction in metals -- Free carrier mobility -- Drift -- Charge conservation -- Relaxation time for good conductors -- 3.2 Conduction in semiconductors -- Electrons and holes -- Doping -- Acceptor and donor accounting -- Free carrier mobility -- Free carrier mobility model -- Hall effect -- 3.3 Diffusion -- 3.4 Thermal noise -- Thermodynamic origin of noise -- 3.5 References -- 4 Ampère, Faraday, and Maxwell -- 4.1 Ampère: static magnetic fields -- Experimental observations -- Magnetic force -- Magnetic field -- Units of magnetic field -- Direction of magnetic force.
E and B duality -- Magnetic charge -- Divergence of B -- Divergence of curl -- Ampère's Law -- Application of Ampère's Law -- Magnetic vector potential -- Equations for potential -- Why use vector potential? -- From vector A to B -- Yet another vector identify -- 4.2 Magnetic materials -- Magnetization vector -- Another Divergence Theorem -- Vector potential due to magnetization -- Volume and surface currents -- Relative permeability -- Ampère's equation for media -- Magnetic materials -- Paramagnetic materials -- Ferromagnetics and ferrimagnetics -- Boundary conditions for a magnetic field -- Tangential H -- Normal B -- Boundary conditions for a conductor -- 4.3 Faraday's big discovery -- Faraday's Law in differential form -- Example 8 -- Transformers -- Generating sparks! -- The return of the vector potential -- Is the vector potential real? -- 4.4 Maxwell's displacement current -- Magnetic field of a capacitor -- Displacement current of a capacitor -- Maxwell's equations -- Source-free regions -- Time-harmonic Maxwell's equation -- Tangential boundary conditions -- Boundary conditions for current -- 4.5 References -- 5 Inductance -- 5.1 Introduction -- 5.2 Inductance -- Magnetic flux -- Flux linkage -- Mutual and self inductance -- System of mutual inductance equations -- 5.3 Magnetic energy and inductance -- Energy for a system of current loops -- Energy for two loops -- Generalize to N loops -- Energy in terms of vector potential -- Energy in terms of fields -- Another formula for inductance -- Self inductance of filamentary loops -- Magnetic energy of a circuit -- Coupling coef cient -- 5.4 Discussion of inductance -- Magnetostatics and quasistatics -- Magnetic flux -- Internal and external inductance -- Internal inductance of a round wire -- Inductance for a general structure -- Mutual inductance -- Magnetic energy perspective.
Magnetic vector potential -- 5.5 Partial inductance and return currents -- 5.6 Impedance and quality factor -- 5.7 Frequency response of inductors -- Skin effect -- Surface impedance -- Impedance of round wires -- Approximate impedance of rectangular wires -- Lossless inductors -- 5.8 Quality factor of inductors -- Inductor loss mechanisms -- Conductive losses -- Internally induced losses -- Externally induced losses -- Magnetization losses -- Displacement current losses -- Radiative losses -- Overall quality factor due to multiple loss mechanisms -- 5.9 Inductors and switching circuits -- 5.10 Preview: how inductors mutate into capacitors -- 5.11 References -- 6 Passive device design and layout -- 6.1 Ring inductor -- Skin effect -- Substrate losses -- 6.2 The classic coil -- Rectangular coils -- 6.3 Spirals -- 6.4 Symmetric inductors -- 6.5 Multilayer inductors -- 6.6 Inductor equivalent circuit models -- 6.7 Integrated capacitors -- Metal-insulator-metal (MIM) capacitors -- Capacitor Q -- 6.8 Calculation by means of the vector potential -- Partial inductance -- Magnetic vector integral and differential equations -- Filamental calculations -- Geometric mean distance and the Grover/Greenhouse methods -- General orthogonal geometries -- Arbitrary geometry -- Effect of an ideal ground plane -- 6.9 References -- 6.10 Appendix: Filamental partial mutual inductance -- 7 Resonance and impedance matching -- 7.1 Resonance -- Series RLC circuits -- Circuit transfer function -- Circuit bandwidth -- Circuit damping factor -- Energy storage in RLC "tank" -- Parallel RLC circuits -- Circuit transfer function -- 7.2 The many faces of Q -- Practical issues with resonators -- Inductor equivalent circuit -- Shunt-series transformation -- Simplifying practical RLC resonators -- LC tanks -- 7.3 Impedance matching -- Why play the matchmaker? -- Optimal power transfer.
Optimal noise figure -- Minimum reflections in transmission lines -- Optimal efficiency -- Capacitive and inductive dividers -- An L match -- Insertion loss of an L-matching network -- Reactance absorption -- A Pi match -- A T match -- Multi-section low Q matching -- 7.4 Distributed matching networks -- 7.5 Filters -- 7.6 References -- 8 Small-signal high-speed amplifiers -- 8.1 Broadband amplifiers -- Resistive load amplifiers -- Tuned amplifiers -- Feedback amplifiers -- Single stage feedback -- Shunt peaking -- Reactive series feedback -- Practical issues with inductive degeneration -- RF chokes and bypass caps -- Parasitic inductance -- 8.2 Classical two-port amplifier design -- The admittance parameters -- Properties of a two-port -- Input/output admittance -- Power gain -- Comparison of power gains -- Maximum gain -- Two-port stability and passivity -- Stability of a two-port -- Linvill/Llewellyn stability factors -- Stability from scattering parameters -- stability test -- K- test -- Mason's invariant U function -- Properties of U -- Maximum unilateral gain -- Unilaterized two-port -- Neutralization -- Single-stage feedback revisited -- Inductive degeneration -- Capacitive degeneration -- Resistive degeneration -- Shunt feedback -- 8.3 Transistor figures of merit -- 8.4 References -- 9 Transmission lines -- 9.1 Distributed properties of a cable -- 9.2 An infinite ladder network -- 9.3 Transmission lines as distributed ladder networks -- Telegrapher's time harmonic equations -- Transmission line properties -- 9.4 Transmission line termination -- 9.5 Lossless transmission lines -- Voltage standing wave ratio (VSWR) -- Transmission line input impedance -- Shorted transmission line -- 9.6 Lossy transmission lines -- Transmission line input impedance -- Dispersionless line -- Power flow on a lossy line -- 9.7 Field theory of transmission lines.
9.8 T-line structures -- The coaxial line -- Balanced two-wire line -- On-chip differential transmission line -- Stripline and microstrip line -- Co-planar lines -- 9.9 Transmission line circuits -- Open and short transmission lines -- Open transmission line -- Shorted transmission line -- Half-wave line -- Quarter-wave line -- Transmission line resonance -- Shorted half-wave line resonance -- Shorted quarter-wave line resonance -- Feynman's can -- Lumped/distributed resonant networks -- 9.10 The Smith Chart -- Smith Chart construction -- Load on Smith Chart -- The Admittance Chart -- 9.11 Transmission line-matching networks -- Matching with lumped elements -- Matching with T-line stubs -- Matching with the aid of the Smith Chart -- 9.12 References -- 10 Transformers -- 10.1 Ideal transformers -- 10.2 Dot convention -- 10.3 Coupled inductors as transformers -- 10.4 Coupled inductor equivalent circuits -- 10.5 Transformer design and layout -- 10.6 Baluns -- 10.7 Hybrid transformer -- 10.8 Transformer parasitics -- 10.9 Transformer gures of merit -- 10.10 Circuits with transformers -- Mixers -- Interstage power matching -- Power combining -- Magnetic feedback -- RFID -- 10.11 References -- 11 Distributed circuits -- 11.1 Distributed RC circuits -- Distributed resistor -- Metal-insulator-metal (MIM) capacitor -- Single contact structure -- Double contact structure -- 11.2 Transmission line transformers -- Low frequencies: a common-mode choke -- Broadband inverter -- Transmission line transformer balun -- 4:1 Unbalanced Guannella transformer -- 11.3 FETs at high frequency -- Extrinsic gate resistance -- Intrinsic gate NQS resistance -- Gate induced noise -- FET equivalent circuit -- 11.4 Distributed amplifier -- Ideal lossless distributed amplifier -- Lossy distributed amplifier -- Artificial distributed amplifier -- 11.5 References.
12 High-speed switching circuits.
Abstract:
Describes the fundamental electromagnetics of passive and active circuit elements, highlighting the various effects and potential problems in circuit design.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Genre:
Electronic Access:
Click to View