Cover image for Hydraulics of Open Channel Flow.
Hydraulics of Open Channel Flow.
Title:
Hydraulics of Open Channel Flow.
Author:
Chanson, Hubert.
ISBN:
9780080472973
Personal Author:
Edition:
2nd ed.
Physical Description:
1 online resource (651 pages)
Contents:
Cover -- The Hydraulics of Open Channel Flow: An Introduction -- Contents -- Preface to the first edition -- Preface to the second edition -- Acknowledgements -- About the author -- Dedication -- Glossary -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- R -- S -- T -- U -- V -- W -- Y -- List of symbols -- Greek symbols -- Subscript -- Abbreviations -- Reminder -- Dimensionless numbers -- Notes -- Part 1 Basic Principles of Open Channel Flows -- 1. Introduction -- Summary -- 1.1 Presentation -- 1.2 Fluid properties -- 1.3 Static fluids -- 1.4 Open channel flow -- 1.4.1 Definition -- 1.4.2 Applications -- 1.4.3 Discussion -- 1.5 Exercises -- 2. Fundamental equations -- Summary -- 2.1 Introduction -- 2.2 The fundamental equations -- 2.2.1 Introduction -- 2.2.2 The continuity equation -- 2.2.3 The momentum equation -- The Navier-Stokes equation -- Application of the momentum equation -- Application: hydraulic jump -- The Bernoulli equation -- 2.2.4 The energy equation -- 2.3 Exercises -- 3. Applications of the Bernoulli equation to open channel flows -- Summary -- 3.1 Introduction -- 3.2 Application of the Bernoulli equation - specific energy -- 3.2.1 Bernoulli equation -- Summary -- Application of the Bernoulli equation -- Hydrostatic pressure distribution in open channel flow -- Pressure distribution in open channel flow -- Mean total head -- Pitot tube -- 3.2.2 Influence of the velocity distribution -- Introduction -- Velocity distribution -- Velocity coefficients -- Momentum correction coefficient -- Kinetic energy correction coefficient -- Correction coefficient in the Bernoulli equation -- 3.2.3 Specific energy -- Definition -- Analysis of the specific energy -- Relationship flow depth versus specific energy -- Critical flow conditions -- Application of the specific energy -- Discussion.

Change in specific energy associated with a fixed discharge -- Case of fixed specific energy -- 3.2.4 Limitations of the Bernoulli equation -- 3.3 Froude number -- 3.3.1 Definition -- 3.3.2 Similarity and Froude number -- 3.3.3 Critical conditions and wave celerity -- 3.3.4 Analogy with compressible flow -- 3.3.5 Critical flows and controls -- Occurrence of critical flow - control section -- Upstream and downstream controls -- Application: influence of the channel width -- 3.4 Properties of common open-channel shapes -- 3.4.1 Properties -- 3.4.2 Critical flow conditions -- 3.5 Exercises -- 4. Applications of the momentum principle: hydraulic jump, surge and flow resistance in open channels -- Summary -- 4.1 Momentum principle and application -- 4.1.1 Introduction -- 4.1.2 Momentum principle -- 4.1.3 Momentum function -- 4.2 Hydraulic jump -- 4.2.1 Presentation -- Definition -- 4.2.2 Basic equations -- 4.2.3 Discussion -- Types of hydraulic jump -- Length of the roller -- Application: energy dissipation basin -- 4.3 Surges and bores -- 4.3.1 Introduction -- 4.3.2 Equations -- 4.3.3 Discussion -- 4.3.4 Positive and negative surges -- Definitions -- Positive surges -- Negative surges -- Discussion -- 4.4 Flow resistance in open channels -- 4.4.1 Presentation and definitions -- Introduction -- Head loss -- Bottom shear stress and shear velocity -- Friction factor calculation -- 4.4.2 Flow resistance of open channel flows -- Momentum equation in steady uniform equilibrium open channel flow -- Chézy coefficient -- The Gauckler-Manning coefficient -- The Strickler's coefficient -- Particular flow resistance approximations -- 4.5 Flow resistance calculations in engineering practice -- 4.5.1 Introduction -- Flow resistance calculations in open channels -- 4.5.2 Selection of a flow resistance formula -- 4.5.3 Flow resistance in a flood plain -- 4.6 Exercises.

Momentum equation -- Hydraulic jump -- Surges and bores -- Flow resistance -- 5. Uniform flows and gradually varied flows -- Summary -- 5.1 Uniform flows -- 5.1.1 Presentation -- Definition -- Basic equations -- 5.1.2 Discussion -- Mild and steep slopes -- Critical slope -- Application: most efficient cross-sectional shape -- 5.1.3 Uniform flow depth in non-rectangular channels -- 5.2 Non-uniform flows -- 5.2.1 Introduction -- 5.2.2 Equations for GVF: backwater calculation -- 5.2.3 Discussion -- Singularity of the energy equation -- Free-surface profiles -- 5.2.4 Backwater computations -- Discussion -- Standard step method (distance calculated from depth) -- 5.3 Exercises -- Critical and uniform flow calculations -- Hydraulic controls -- Backwater calculations -- Part 1 Revision exercises -- Revision exercise No. 1 -- Revision exercise No. 2 -- Revision exercise No. 3 -- Revision exercise No. 4 -- Revision exercise No. 5 -- Revision exercise No. 6 -- Revision exercise No. 7 -- Revision exercise No. 8 -- Revision exercise No. 9 -- Appendices to Part 1 -- A1.1 Constants and fluid properties -- A1.1.1 Acceleration of gravity -- Standard acceleration of gravity -- Absolute gravity values -- A1.1.2 Properties of water -- A1.1.3 Gas properties -- Basic equations -- Physical properties -- Compressibility and bulk modulus of elasticity -- Celerity of sound -- Introduction -- Sound celerity in gas -- Classical values -- A1.1.4 Atmospheric parameters -- Air pressure -- Air temperature -- Viscosity of air -- A1.2 Unit conversions -- A1.2.1 Introduction -- Principles and rules -- A1.2.2 Units and conversion factors -- A1.3 Mathematics -- Summary -- A1.3.1 Introduction -- References -- Notation -- Constants -- A1.3.2 Vector operations -- Definitions -- Vector operations -- Scalar product of two vectors -- Vector product -- A1.3.3 Differential and differentiation.

Absolute differential -- Differential operators -- Gradient -- Divergence -- Curl -- Laplacian operator -- Polar coordinates -- Operator relationship -- Gradient -- Divergence -- Curl -- Laplacian -- A1.3.4 Trigonometric functions -- Definitions -- Relationships -- Inverse trigonometric functions -- A1.3.5 Hyperbolic functions -- Definitions -- Relationships -- Inverse hyperbolic functions -- A1.3.6 Complex numbers -- Definition -- Properties -- Conjugate number -- A1.3.7 Polynomial equations -- Presentation -- Polynomial equation of degree two -- Polynomial equation of degree three -- A1.4 Alternate depths in open channel flow -- A1.4.1 Presentation -- A1.4.2 Discussion -- Part 2 Introduction to Sediment Transport in Open Channels -- 6. Introduction to sediment transport in open channels -- 6.1 Introduction -- 6.2 Significance of sediment transport -- 6.2.1 Sediment transport in large alluvial streams -- 6.2.2 Failures caused by sediment-transport processes -- Moore Creek dam, Tamworth, Australia -- Old Quipolly dam, Werris Creek, Australia -- Mount Isa railway bridges, Queensland, Australia -- Shihmen dam, Taiwan -- 6.3 Terminology -- 6.4 Structure of this section -- 6.5 Exercises -- 7. Sediment transport and sediment properties -- 7.1 Basic concepts -- 7.1.1 Definitions -- 7.1.2 Bed formation -- 7.2 Physical properties of sediments -- 7.2.1 Introduction -- 7.2.2 Property of single particles -- 7.2.3 Properties of sediment mixture -- 7.2.4 Particle size distribution -- 7.3 Particle fall velocity -- 7.3.1 Presentation -- 7.3.2 Settling velocity of a single particle in still fluid -- Discussion: settling velocity of sediment particles -- 7.3.3 Effect of sediment concentration -- 7.3.4 Effect of turbulence on the settling velocity -- 7.4 Angle of repose -- 7.5 Laboratory measurements -- 7.5.1 Particle size distribution.

7.5.2 Concentration of suspended sediments -- 7.6 Exercises -- Bed forms -- Sediment properties -- Settling velocity -- 8. Inception of sediment motion - occurrence of bed load motion -- 8.1 Introduction -- 8.2 Hydraulics of alluvial streams -- 8.2.1 Introduction -- 8.2.2 Velocity distributions in turbulent flows -- 8.2.3 Velocity profiles in alluvial streams -- 8.2.4 Forces acting on a sediment particle -- 8.3 Threshold of sediment bed motion -- 8.3.1 Introduction -- 8.3.2 Simple dimensional analysis -- Discussion -- 8.3.3 Experimental observations -- Comments -- 8.3.4 Discussion -- 8.4 Exercises -- 9. Inception of suspended-load motion -- 9.1 Presentation -- 9.2 Initiation of suspension and critical bed shear stress -- 9.3 Onset of hyperconcentrated flow -- 9.3.1 Definition -- 9.3.2 Discussion -- 9.4 Exercises -- 10. Sediment transport mechanisms: 1. Bed-load transport -- 10.1 Introduction -- Definitions -- 10.2 Empirical correlations of bed-load transport rate -- 10.2.1 Introduction -- 10.2.2 Empirical bed-load transport predictions -- 10.3 Bed-load calculations -- 10.3.1 Presentation -- 10.3.2 Bed-load transport rate -- 10.3.3 Discussion -- 10.4 Applications -- 10.4.1 Application No. 1 -- First calculations -- Approach No. 1: Meyer-Peter correlation -- Approach No. 2: Einstein function -- Approach No. 3: bed-load calculation (equation (10.5)) -- Summary -- 10.4.2 Application No. 2 -- First calculations -- Approach No. 1: Meyer-Peter correlation -- Approach No. 2 : Einstein function -- Approach No. 3: bed-load calculation (equation (10.5)) -- Summary -- 10.4.3 Application No. 3 -- First calculations -- Approach No. 1: Meyer-Peter correlation -- Approach No. 2: Einstein function -- Approach No. 3: bed-load calculation (equation (10.5)) -- Summary -- Discussion -- 10.5 Exercises -- 11. Sediment transport mechanisms: 2. Suspended-load transport.

11.1 Introduction.
Abstract:
Since the publication of its first edition in 1999, 'The Hydraulics of Open Channel Flow' has been praised by professionals, academics, students and researchers alike as the most practical modern textbook on open channel flow available. This new edition includes substantial new material on hydraulic modelling, in particular addressing unsteady open channel flows. There are also many new exercises and projects, including a major new revision assignment. This innovative textbook contains numerous examples and practical applications, and is fully illustrated with photographs. Dr Chanson introduces the basic principles of open channel flow and takes readers through the key topics of sediment transport, hydraulic modelling and the design of hydraulic structures. ·Comprehensive coverage of the basic principles of key application areas of the hydraulics of open channel flow ·New exercises and examples added to aid understanding ·Ideal for use by students and lecturers in civil and environmental engineering.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: