
Polymer Foams Handbook : Engineering and Biomechanics Applications and Design Guide.
Title:
Polymer Foams Handbook : Engineering and Biomechanics Applications and Design Guide.
Author:
Mills, Nigel.
ISBN:
9780080475448
Personal Author:
Physical Description:
1 online resource (562 pages)
Contents:
Front cover -- Polymer Foams Handbook -- Copyright page -- Contents -- Foreword -- Acknowledgements -- Chapter 1. Introduction to polymer foam microstructure -- 1.1 Open- and closed-cell foams -- 1.2 Relative density: wet and dry foams -- 1.3 Edges -- 1.4 Vertices -- 1.5 Faces -- 1.6 Cell geometry -- 1.7 Cells -- 1.8 Foam microstructural models -- 1.8.1 Lattice micromechanics models -- 1.8.2 Cell (bubble) growth -- 1.8.3 Irregular models -- 1.9 Bead foams -- References -- Chapter 2. Polyurethane foams: processing and microstructure -- 2.1 Introduction -- 2.2 PU chemistry -- 2.3 PU foam processes -- 2.3.1 Slabstock foam -- 2.3.2 Moulded PU foam -- 2.3.3 Slow-recovery foams -- 2.4 PU microstructure -- 2.5 Effect of microstructure on mechanical properties -- 2.6 PU foam microstructure -- 2.6.1 Slabstock PU foams -- 2.6.2 Moulded foams -- 2.6.3 Rebonded PU foams -- 2.6.4 Slow-recovery PU foams -- Summary -- References -- Chapter 3. Foamed thermoplastics: microstructure and processing -- 3.1 Introduction -- 3.2 Polyolefins -- 3.2.1 PEs and copolymers -- 3.2.2 Blends -- 3.2.3 Ethylene styrene 'interpolymers' -- 3.2.4 Ethylene-propylene-diene monomer -- 3.2.5 Polypropylenes -- 3.3 Processing -- 3.3.1 Extrusion of thermoplastic foam sheet -- 3.3.2 Melt rheology suitable for foaming -- 3.3.3 Stages in closed-cell foam development -- 3.3.4 Post-extrusion shrinkage -- 3.3.5 Oriented PP foams - Strandfoam -- 3.4 Foam crystallinity and crystal orientation -- Summary -- References -- Chapter 4. Bead foam microstructure and processing -- 4.1 Introduction -- 4.2 Processing -- 4.2.1 Bead preparation -- 4.2.2 Steam moulding -- 4.2.3 Dimensional stability post-moulding -- 4.3 Microstructure -- 4.3.1 Bead shape and fusion -- 4.3.2 Density variations in large mouldings -- 4.3.3 The effects of processing on properties -- 4.3.4 Bead shape variation.
4.3.5 Microstructural models -- 4.4 Specific bead foams -- 4.4.1 PP bead foam: EPP -- 4.4.2 PS bead foam: EPS -- References -- Chapter 5. Simple mechanical tests -- 5.1 Introduction -- 5.2 Stiffness and strength of structures -- 5.3 Stress-strain responses and material parameters -- 5.3.1 Linearly elastic and isotropic -- 5.3.2 Elastically non-linear and isotropic -- 5.3.3 Anisotropic and elastic -- 5.3.4 Elastic-plastic -- 5.3.5 Elastic-brittle -- 5.3.6 Viscoelastic materials -- 5.3.7 Viscoelastic phenomena -- 5.3.8 Temperature-dependent properties -- 5.4 Test types -- 5.4.1 Uniaxial compressive tests -- 5.4.2 Simple shear tests -- 5.4.3 Bend tests -- 5.4.4 Torsion tests -- 5.5 Testing products with a density gradient -- 5.5.1 Tensile or compression tests on EPS -- 5.5.2 Bend tests on EPS -- 5.6 Test equipment -- 5.6.1 Compressive impact -- 5.6.2 Tensile or shear impact -- 5.6.3 Creep -- 5.6.4 Compression set -- 5.6.5 Poisson's ratio -- 5.6.6 Humidity and temperature control -- References -- Chapter 6. Finite element modelling of foam deformation -- 6.1 Introduction -- 6.1.1 FEA packages -- 6.1.2 Static vs. dynamic FEA -- 6.1.3 FEA material models -- 6.2 Elastic foams -- 6.2.1 Curve fitting vs. strain energy functions -- 6.2.2 Strain energy function for rubbers -- 6.2.3 Ogden strain energy function for elastic foams -- 6.2.4 Validation of FEA: plane-strain indentation of flexible foams -- 6.3 Crushable foams -- 6.3.1 Yield surfaces -- 6.3.2 Crushable foam model in ABAQUS -- 6.3.3 Response of crushable foam model in simple deformations -- 6.3.4 Experimental data -- 6.3.5 Validation of FEA models -- 6.4 Dynamic FEA (explicit) -- 6.4.1 Computing issues -- 6.4.2 Simulation of foam compressive impact tests -- Summary -- References -- Chapter 7. Micromechanics of open-cell foams -- 7.1 Introduction -- 7.1.1 Concepts and approaches.
7.1.2 Observations of cell deformation -- 7.2 Edge geometry and stiffness -- 7.3 Regular polyhedral-cell models -- 7.3.1 Gibson and Ashby model -- 7.3.2 Kelvin cell model -- 7.4 Elastic moduli of the Kelvin foam -- 7.4.1 Uniform edge cross-sections -- 7.4.2 Non-uniform edge cross-sections -- 7.5 Compression of the Kelvin foam with uniform edges -- 7.5.1 History of modelling -- 7.5.2 Stress-strain response -- 7.5.3 Long range buckling -- 7.6 FEA model of wet Kelvin foam -- 7.6.1 [001] direction compression -- 7.6.2 [111] direction compression -- 7.7 Irregular foam models -- 7.8 Anisotropic cell shapes -- 7.9 Non-linear polymer response -- 7.10 Strain localisation -- 7.11 Modelling edge touching -- 7.12 Comparison with experiment -- References -- Chapter 8. Air flow in open-cell foams -- 8.1 Introduction -- 8.2 Air-flow measurement -- 8.2.1 Equipment -- 8.2.2 Data treatment -- 8.2.3 Data for PU foams with fully open cells -- 8.2.4 Data for compressed PU foams with fully open cells -- 8.2.5 Data for PU foams with partly open cells -- 8.3 Models for air-flow resistance -- 8.3.1 Gent-Rusch model -- 8.3.2 Gent-Rusch model with distorted faces -- 8.3.3 Fourie and Du Plessis model -- 8.3.4 CFD of Kelvin foam model -- 8.3.5 CFD of bead foam channels -- 8.3.6 CFD of the Weaire-Phelan model -- 8.4 Air flow during foam impact compression -- 8.4.1 Air pressure changes during compressive impacts -- 8.4.2 Air-flow modelling -- 8.5 Sound absorption in foams -- 8.6 Filters -- References -- Chapter 9. Seating case study -- 9.1 Introduction -- 9.2 Biomechanics of sitting in chairs -- 9.2.1 Seating posture and mannikins -- 9.2.2 Pressure sores and ischaemia -- 9.2.3 Measuring seating pressure distributions -- 9.2.4 Comparative deformation of the thigh and foam cushion -- 9.2.5 Moisture and heat transmission to the seat -- 9.2.6 Design of wheelchair seats.
9.2.7 Mattresses and sleep comfort -- 9.3 Car seats -- 9.3.1 Types of car seat -- 9.3.2 Comfort -- 9.3.3 Vibration transmission -- 9.3.4 Crash safety -- 9.4 Foam selection -- 9.4.1 Foam grades and the indentation force deflection test -- 9.4.2 FEA of IFD experiments -- 9.4.3 Comparison with experimental IFD pressure fields -- 9.4.4 Foam selection factors -- 9.4.5 High resilience PU foams -- 9.4.6 Ultra-low resilience PU foams -- 9.5 Seat design -- 9.5.1 Uniform uniaxial compression -- 9.5.2 Indentation with a rigid butt-form -- 9.5.3 Indentation with a compliant dummy -- 9.5.4 FEA of buttock and foam deformation -- 9.6 Other foam mechanical properties -- 9.6.1 Mechanical fatigue -- 9.6.2 Hydrolysis -- 9.6.3 Additives to provide fire resistance -- Summary -- References -- Chapter 10. Sport mat case study -- 10.1 Introduction -- 10.1.1 Mats used in sport -- 10.1.2 Foam materials -- 10.1.3 Head impacts -- 10.2 Modelling of impacts -- 10.2.1 Type of analysis -- 10.2.2 Hyperfoam model parameters for FEA -- 10.2.3 Static FEA model -- 10.2.4 Viscoelastic FEA model -- 10.3 Experimental impacts -- 10.3.1 Falling headform test -- 10.3.2 Effect of headform velocity -- 10.4 Fall mat design -- 10.5 Martial arts mats -- 10.5.1 Oblique foot impacts -- 10.5.2 FEA of mat deformation -- References -- Chapter 11. Micromechanics of closed-cell foams -- 11.1 Introduction -- 11.2 Observations of cell deformation -- 11.3 Material responses -- 11.3.1 The gas and polymer in parallel -- 11.3.2 Polymer response -- 11.3.3 Air response -- 11.4 Air-polymer interactions -- 11.4.1 Face bulging due to cell pressure differentials -- 11.4.2 Foam diffusivity -- 11.4.3 Heat transfer from cell air to faces -- 11.5 Kelvin foam model for elastic moduli -- 11.5.1 Young's modulus -- 11.5.2 Bulk modulus -- 11.5.3 Young's modulus assuming wrinkled faces.
11.6 Regular foam models for high strain compression -- 11.6.1 Introduction -- 11.6.2 Gibson-Ashby models -- 11.6.3 Kelvin foam elastic-plastic model -- 11.6.4 Wierzibicki plasticity model -- 11.6.5 Dynamic FEA of Kelvin foam model -- 11.6.6 Modelling unloading -- 11.7 Irregular foam models -- 11.8 Bead foams -- 11.8.1 Deformation mechanisms -- 11.8.2 Models for compression -- 11.9 Discussion -- References -- Chapter 12. Product packaging case study -- 12.1 Introduction -- 12.2 Simple drops with the box parallel to the floor -- 12.2.1 Drop heights and fragility factors -- 12.2.2 Cushion curve tests -- 12.2.3 Cushioning provided by the cardboard box -- 12.2.4 Design using cushion curves -- 12.2.5 Calculating cushion curves from stress-strain responses -- 12.2.6 Cushion curves for specific stress-strain responses -- 12.2.7 Energy absorption diagrams and foam selection -- 12.3 Design of EPS mouldings -- 12.3.1 Moulding geometry -- 12.3.2 Stupak and Donovan's model for tapered ribs -- 12.3.3 FEA of truncated pyramids -- 12.3.4 Design rules for ribs -- 12.4 Other factors in packaging design -- 12.4.1 Foam creep during storage -- 12.4.2 Package vibration in transit -- 12.4.3 Temperature -- 12.4.4 Multiple impacts -- 12.5 In-package tests of shock absorption -- 12.5.1 Introduction -- 12.5.2 Corner and edge impacts -- 12.5.3 FEA of in-box PE foam packaging -- Summary -- References -- Chapter 13. Running shoe case study -- 13.1 Introduction -- 13.1.1 Information sources -- 13.1.2 Foam shoe components -- 13.1.3 Patented features in shoes -- 13.2 Foam selection and properties -- 13.2.1 Material selection -- 13.2.2 Microstructure and processing of EVA foam -- 13.2.3 Alternatives to EVA foam -- 13.2.4 Grades of foam -- 13.3 Running biomechanics -- 13.3.1 Midsole foam pressure distribution -- 13.3.2 Foot strike forces -- 13.3.3 Foam flexure and heel stability.
13.3.4 The effect of the shoe on running style.
Abstract:
This handbook explores the applications of polymer foams, and the properties that make them suitable for so many applications, in the detail required by postgraduate students, researchers and the many industrial engineers and designers who work with polymer foam in industry. It covers the mechanical properties of foams and foam microstructure, processing of foams, mechanical testing and analysis (using Finite element analysis). In addition, it uniquely offers a broader perspective on the actual engineering of foams and foam based (or foam including) products by including nine detailed case studies which firmly plant the theory of the book in a real world context, making it ideal for both polymer engineers and chemists and mechanical engineers and product designers. * Complete coverage of the mechanical and design aspects of polymer foams from an acknowledged international expert: no other book is available with this breadth making this a plastics engineer's first choice for a single volume Handbook * Polymer foams are ubiquitous in modern life, used everywhere from running shoes to furniture, and this book includes nine extensive case studies covering each key class of application, including biomechanics * Offers a rigorous mechanical and microstructure perspective, plus a computer based chapter: Essential for engineers and designers alike.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View