Cover image for Intuitive Analog Circuit Design.
Intuitive Analog Circuit Design.
Title:
Intuitive Analog Circuit Design.
Author:
Thompson, Marc.
ISBN:
9780080478753
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (497 pages)
Contents:
front cover -- copyright -- In memoriam -- Dedication -- table of contents -- front matter -- Preface -- Intended Audience -- Text Outline -- Acknowledgments -- body -- 1 Introduction and Motivation -- The Need for Analog Designers -- Some Early History of Technological Advances in Analog Integrated Circuits -- Digital vs. Analog Implementation: Designer's Choice -- So, Why Do We Become Analog Designers? -- Note on Nomenclature in this Text -- Note on Coverage in this Book -- References -- U.S. Patents -- 2 Review of Signal-Processing Basics -- Review of Laplace Transforms, Transfer Functions and Pole-Zero Plots -- First-Order System Response -- Second-Order Systems -- Review of Resonant Electrical Circuits -- Use of Energy Methods to Analyze Undamped Resonant Circuits -- Transfer Functions, Pole/Zero Plots and Bode Plots -- Risetime for Cascaded Systems -- Chapter 2 Problems -- References -- 3 Review of Diode Physics and the Ideal (and Later, Nonideal) Diode -- Current Flow in Insulators, Good Conductors and Semiconductors -- Electrons and Holes -- Drift, Diffusion, Recombination and Generation -- Effects of Semiconductor Doping -- PN Junction Under Thermal Equilibrium -- PN Junction Under Applied Forward Bias -- Reverse Biased Diode -- Ideal Diode Equation -- Charge Storage in Diodes -- Charge Storage in the Diode Under Forward Bias -- Reverse Recovery in Bipolar Diodes -- Reverse Breakdown -- Taking a Look at a Diode Datasheet -- Some Quick Comments on Schottky Diodes -- Chapter 3 Problems -- References -- 4 Bipolar Transistor Models -- A Little Bit of History -- Basic NPN Transistor -- Transistor Models in Different Operating Regions -- Low-Frequency Incremental Bipolar Transistor Model -- High-Frequency Incremental Model -- Reading a Transistor Datasheet -- Limitations of Hybrid-Pi Model -- Chapter 4 Problems -- References.

5 Basic Bipolar Transistor Amplifiers and Biasing -- The Issue of Transistor Biasing -- Example 5.1: Biasing example -- Some Transistor Amplifiers -- Example 5.2: Emitter follower design example -- Example 5.3: Peaking amplifier -- Chapter 5 Problems -- References -- 6 Bandwidth Estimation Techniques and the Method of Open-Circuit Time Constants -- Introduction to Open-Circuit Time Constants -- Example 6.1: Elementary OCTC example -- Transistor Amplifier Examples -- Example 6.2: Common-emitter amplifier (revisited) -- Example 6.3: Emitter-follower bandwidth estimate -- Example 6.4: Differential amplifier -- Example 6.5: Design case study using open-circuit time constants -- Chapter 6 Problems -- References -- 7 Advanced Transistor Amplifier Techniques -- Worst-Case Open-Circuit Time Constant Calculations -- Example 7.1: Estimating bandwidth of common-emitter amplifier with emitter degeneration -- Example 7.2: Gain of differential amplifier with emitter degeneration -- High-Frequency Output and Input Impedance of Emitter-Follower Buffers -- Example 7.3: Emitter-follower output impedance -- Example 7.4: Emitter-follower input impedance -- Bootstrapping -- Example 7.5: Bootstrapping an emitter-follower -- Example 7.6: Another bootstrapping design example -- Short-Circuit Time Constants -- Example 7.7: Short-circuit time constants design example -- Example 7.8: Peaking amplifier revisited -- Example 7.9: Common-base amplifier -- Example 7.10: Current amplifier -- Pole Splitting -- Example 7.11: Pole splitting -- Chapter 7 Problems -- References -- 8 High-Gain Bipolar Amplifiers and BJT Current Mirrors -- The Need to Augment the Hybrid-Pi Model -- Base-Width Modulation -- Finding Parameters from a Transistor Datasheet -- Common-Emitter Amplifier with Current Source Load -- Building Blocks -- Example 8.1: Incremental input resistance of emitter-follower.

Example 8.2: Widlar current mirror -- Example 8.3: Widlar mirror incremental output resistance -- Example 8.4: Current mirror error due to mismatched VCEs -- Example 8.5: Design example-high-gain amplifier -- Example 8.6: Another high-gain amplifier example -- Example 8.7: Another high-gain amplifier example (revisited) -- Chapter 8 Problems -- References -- 9 Introduction to MOSFET Devices and Basic MOS Amplifiers -- Some Early History of Field-Effect Transistors -- Qualitative Discussion of Basic MOS Devices -- Figuring Out the V/I Curve of a MOS Device -- Curve of a MOS Device -- MOS Small-Signal Model (Low Frequency) -- MOS Small-Signal Model (High Frequency) -- Basic MOS Amplifiers -- Example 9.1: MOS amplifier design example -- Chapter 9 Problems -- References -- 10 Bipolar Transistor Switching and the Charge Control Model -- Introduction -- Development of the Switching Models -- Reverse-Active Region -- Saturation -- Junction Capacitances -- Relationship Between Charge Control and Hybrid-Pi Parameters -- Finding Junction Capacitances from the Datasheet -- Manufacturers' Testing -- Charge Control Model Examples -- Example 10.1: Transistor inverter with base current drive -- Example 10.2: Transistor inverter with voltage drive -- Example 10.3: Nonsaturating current switch -- Emitter Switching -- 2N2222 Datasheet Excerpts -- Chapter 10 Problems -- References -- 11 Review of Feedback Systems -- Introduction and Some Early History of Feedback Control -- Invention of the Negative Feedback Amplifier -- Control System Basics -- Loop Transmission and Disturbance Rejection -- Stability -- Routh Stability Criterion -- The Phase Margin and Gain Margin Tests -- Relationship Between Damping Ratio and Phase Margin -- Loop Compensation Techniques-Lead and Lag Networks -- Parenthetical Comment on Some Interesting Feedback Loops.

Example 11.1: Gain of +1 amplifier -- Example 11.2: Gain of +10 amplifier -- Example 11.3: Integral control of reactive load -- Example 11.4: Photodiode amplifier -- Example 11.5: MOSFET current source -- Example 11.6: Maglev example -- Appendix: MATLAB Scripts -- Chapter 11 Problems -- References -- 12 Basic Operational Amplifier Topologies and a Case Study -- Basic Device Operation -- Example 12.1: Case study: Design, analysis and simulation of a discrete operational amplifier -- Brief Review of LM741 Op-Amp Schematic -- Some Real-World Limitations of Operational Amplifiers -- Example 12.2: Op-amp driving capacitive load -- Chapter 12 Problems -- References -- 13 Review of Current Feedback Operational Amplifiers -- Conventional Voltage-Feedback Op-Amp and the Constant "Gain Bandwidth Product" Paradigm -- Slew Rate Limitations in Conventional Op-Amps -- Basic Current Feedback Op-Amp -- Absence of Slew Rate Limit in Current Feedback Op-Amps -- Example 13.1: An admittedly very crude current-feedback op-amp discrete design -- Manufacturer's Datasheet Information for a Current Feedback Amplifier -- A More Detailed Model and Some Comments on Current-Feedback Op- Amp Limitations -- Chapter 13 Problems -- References -- 14 Analog Low-Pass Filters -- Introduction -- Review of Low-Pass Filter Basics -- Butterworth Filter -- Chebyshev Filter -- Bessel Filter -- Comparison of Responses of Different Filter Types -- Filter Implementation -- Example 14.1: Design example: Fifth-order Chebyshev filter with 0.5dB passband ripple -- Example 14.2: Design Example: 40-Hz Sallen-Key with Adjustable Q -- Example 14.3: Design case study: 1-MHz low-pass filter -- Example 14.4: Alternate design using Butterworth filter -- Chapter 14 Problems -- References -- 15 Review of Passive Components and a Case Study in PC Board Layout -- Resistors -- Comments on Surface-Mount Resistors.

Comments on Resistor Types -- Capacitors -- Inductors -- Discussion of Printed-Circuit Board Layout Issues -- Approximate Inductance of a PC Board Trace Above a Ground Plane -- Example 15.1: Design case study-high-speed semiconductor laser diode driver -- Chapter 15 Problems -- References -- 16 Other Useful Design Techniques and Loose Ends -- Thermal Circuits -- Steady-State Model of Conductive Heat Transfer -- Thermal Energy Storage -- Using Thermal Circuit Analogies to Determine Static Semiconductor Junction Temperature -- Mechanical Circuit Analogies -- Mechanical system: Electrical system: -- Example 16.1: Using mechanical circuit analogies -- The Translinear Principle -- Input Impedance of Infinitely Long Resistive Ladder -- Transmission Lines 101 -- Example 16.2: Transmission line calculation -- Node Equations and Cramer's Rule -- Example 16.3: Using Cramer's rule to solve simultaneous linear equations -- Finding Oscillation Modes -- Example 16.4: Finding oscillation modes using MATLAB -- Some Comments on Scaling Laws in Nature -- Chapter 16 Problems -- References -- Index -- back matter -- What's on the CD-ROM? -- CD-ROM License Agreement.
Abstract:
This book reflects Marc Thompson's twenty years of experience designing and teaching analog circuit design. He describes intuitive and "back of the envelope” techniques for designing and analyzing analog circuits, including transistor amplifiers (CMOS and bipolar), transistor switching, thermal circuit design, magnetic circuit design, control systems, and the like. The application of some simple rules-of-thumb and design techniques is the first step in developing an intuitive understanding of the behavior of complex electrical systems. This book outlines some ways of thinking about analog circuits and systems that hopefully develops such "circuit intuition” and a "feel” for what a good, working analog circuit design should be. *Introduces analog circuit design with a minimum of mathematics. *Gives readers an intuitive "feel" for analog circuit operation and rules-of-thumb for their design. *Uses numerous analogies from digital design to help readers whose main background is in digital make the transition to analog design. *Accompanying CD-ROM contains PowerPoint presentations for each chapter and MATLAB files used in the text.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: