Cover image for 100 Years Of Relativity : Space-time Structure - Einstein And Beyond.
100 Years Of Relativity : Space-time Structure - Einstein And Beyond.
Title:
100 Years Of Relativity : Space-time Structure - Einstein And Beyond.
Author:
Ashtekar, Abhay.
ISBN:
9789812700988
Personal Author:
Physical Description:
1 online resource (527 pages)
Contents:
CONTENTS -- Preface -- ACKNOWLEDGMENTS -- Part I: From Newton to Einstein Paradigm Shifts -- 1. Development of the Concepts of Space, Time and Space-Time from Newton to Einstein J. Stachel -- 1. Introduction: The Changing Nature of Change -- 2. The Bronstein Cube -- 3. Demokritos versus Aristotle: `Space' versus `Place' -- 4. Absolute versus Relational Concepts of Space and Time -- 5. Universal Temporal Order -- 6. Relative Space -- 7. Relative Time -- 8. Fixed Kinematical Structure -- 9. Fetishism of Mathematics -- 10. Four-Dimensional Formulation -- 11. Enter Gravitation: General Non-Relativity -- 12. Dynamizing the Inertial Structure -- 13. General Relativity -- 14. Di erentiable Manifolds, Fiber Bundlesll -- 15. The General-Relativistic Revolution -- 16. The Second Relativization of Time -- 17. What is the Question? -- Acknowledgement -- References -- Part II: Einstein's Universe Rami cations of General Relativity -- 2. Gravitational Billiards, Dualities and Hidden Symmetries H. Nicolai -- 1. Introduction -- Is Einstein's theory integrable? -- What is the symmetry underlying M Theory? -- 2. Known Duality Symmetries -- 2.1. Linearized duality -- 2.2. A nonlinear duality: the Geroch group -- 3. Gravitational Billiards and Kac-Moody Algebras -- 3.1. BKL dynamics and gravitational billiards -- 3.2. Emergence of Kac Moody symmetries -- 3.3. The main conjecture -- 4. Basics of Kac Moody Theory -- 5. The Hyperbolic Kac Moody Algebra AE3 -- 6. Nonlinear -Models in One Dimension -- 7. Finale: E10 { The Ultimate Symmetry? -- Acknowledgments -- References -- 3. The Nature of Spaceime Singularities A. D. Rendall -- 1. Introduction -- 2. Cosmological Singularities -- 3. Black Hole Singularities -- 4. Shells and Shocks -- 5. Critical Collapse -- 6. Conclusion -- References -- 4. Black Holes - An Introduction P. T. Chrusciel -- 1. Stationary Black Holes.

1.1. Asymptotically flat examples -- 1.2. 0 -- 1.3. Black strings and branes -- 2. Model Independent Concepts -- 3. Classification of Asymptotically Flat Stationary Black Holes ("No hair theorems") -- 4. Dynamical Black Holes: Robinson-Trautman Metrics -- 5. Initial Data Sets Containing Trapped, or Marginally Trapped, Surfaces -- 5.1. Brill-Lindquist initial data -- 5.2. The "many Schwarzschild" initial data -- 5.3. Black holes and gluing methods -- Acknowledgements -- References -- 5. The Physical Basis of Black Hole Astrophysics R. H. Price -- 1. Introduction -- I. Frozen or continuous collapse? -- II. Observing the unobservable black hole -- III. Newtonian-like points, or spacetime regions -- IV. Black holes: simple or exceedingly unsimple -- 2. Stationary Black Hole Spacetimes -- 3. Particles and Fields Near Black Holes -- 3.1. Particle worldlines -- 3.2. Radial orbits -- 3.3. Nonradial orbits -- 3.4. Field dynamics -- 4. Observational Black Holes -- 4.1. General considerations -- 4.2. Black hole mass ranges -- 4.3. Accretion, dynamos and luminosity -- 4.4. Exotic orbits, galactic centers, and gravitational waves -- 5. Dynamical Black Holes -- 6. Conclusion -- I. Frozen or continuous collapse? -- II. Observing the unobservable black hole -- III. Newtonian-like points, or spacetime regions -- IV. Black holes: simple or exceedingly unsimple -- Acknowledgments -- References -- 6. Probing Space-Time Through Numerical Simulations P. Laguna -- 1. Multi-Faceted Numerical Relativity -- 2. Geometrodynamics and Numerical Evolutions -- 3. Black Hole Excision: Space-time Surgery -- 4. Initial Data: The Astrophysical Connection -- 5. Gauge Conditions -- 6. Extracting Observables: Connecting with Data Analysis -- 7. Imagining the Future -- Acknowledgments -- Appendix A. The ADM Formulation -- Appendix B. York's Conformal Approach -- References.

7. Understanding Our Universe: Current Status and Open Issues T. Padmanabhan -- 1. Prologue: Universe as a Physical System -- 2. The Cosmological Paradigm -- 3. Growth of Structures in the Universe -- 4. Inflation and Generation of Initial Perturbations -- 5. Temperature Anisotropies of the CMBR -- 6. The Dark Energy -- 7. For the Snark was a Boojum, You See -- 8. Deeper Issues in Cosmology -- References -- 8. Was Einstein Right? Testing Relativity at the Centenary C. M. Will -- 1. Introduction -- 2. The Einstein Equivalence Principle -- 2.1. Tests of the weak equivalence principle -- 2.2. Tests of local Lorentz invariance -- 2.3. Tests of local position invariance -- 3. Solar-System Tests -- 3.1. The parametrized post-Newtonian framework -- 3.2. Bounds on the PPN parameters -- 3.3. Gravity Probe-B -- 4. The Binary Pulsar -- 5. Gravitational-Wave Tests of Gravitation Theory -- 5.1. Polarization of gravitational waves -- 5.2. Speed of gravitational waves -- 5.3. Tests of scalar-tensor gravity -- 6. Conclusions -- References -- 9. Receiving Gravitational Waves P. R. Saulson -- 1. Introduction -- 2. Origin of the Idea of Gravitational Waves and Gravitational Wave Detectors -- 3. Free-Mass Gravitational Wave Detectors -- 4. A Gedanken Experiment to Detect a Gravitational Wave -- 5. First Steps from Thought Experiment to Real Experiment -- 6. Further Advances -- 7. First Steps Toward Kilometer-Scale Interferometers -- 8. LIGO Moves Forward -- 9. Construction, Installation, and Commissioning -- 10. Are We There Yet? -- Acknowledgments -- References -- 10. Relativity in the Global Positioning System N. Ashby -- 1. Introduction -- 2. Reference Frames and the Sagnac Effect -- 3. GPS Coordinate Time and TAI -- 4. The Realization of Coordinate Time -- 5. Relativistic Effects on Satellite Clocks -- 6. TOPEX/POSEIDON Relativity Experiment -- 7. Doppler Effect.

8. Crosslink Ranging -- 9. Frequency Shifts Induced by Orbit Changes -- 10. Secondary Relativistic Effects -- 11. Applications -- 12. Conclusions -- References -- Part III: Beyond Einstein Unifying General Relativity with Quantum Physics -- 11. Spacetime in Semiclassical Gravity L. H. Ford -- 1. Introduction -- 2. Renormalization of (T) -- 3. The Stability Problem in the Semiclassical Theory -- 4. The Hawking Effect -- 5. Quantum Effects in the Early Universe -- 6. The Dark Energy Problem -- 7. Negative Energy Density for Quantum Fields -- 8. Some Possible Consequences of Quantum Violation of Classical Energy Conditions -- 8.1. Singularity avoidance -- 8.2. Creation of naked singularities -- 8.3. Violation of the second law of thermodynamics? -- 8.4. Traversable wormholes and warp drive spacetimes -- 9. Quantum Inequalities -- 9.1. Violations of the second law and of cosmic censorship -- 9.2. Constraints on traversable wormholes and warp drive -- 10. Beyond Semiclassical Gravity: Fluctuations -- 11. Summary -- Acknowledgments -- References -- 12. Space Time in String Theory T. Banks -- 1. Introduction -- 2. Branes, Charges and BPS States -- 3. 11 - 2 = 10 -- 4. 11 - 4 = 10 -- 5. The AdS/CFT Correspondence -- 5.1. Potentials and domain walls -- 5.2. SUSY and large radius AdS space -- 6. The Real World: SUSY Breaking and dS Space -- 7. A Theory of Stable de Sitter Space -- 8. Towards a Holographic Theory of Space-Time -- 9. Conclusions -- References -- 13. Quantum Geometry and Its Rami cations A. Ashtekar -- 1. Setting the Stage -- 2. A Bird's Eye View of Loop Quantum Gravity -- 2.1. Viewpoint -- 2.2. Quantum Geometry -- 2.3. Quantum dynamics -- 3. Applications of Quantum Geometry -- 3.1. Black-holes -- 3.2. Big bang -- 4. Summary and Outlook -- Acknowledgments -- References -- 14. Loop Quantum Cosmology M. Bojowald -- 1. Introduction.

2. Classical Cosmology -- 3. Quantum Gravity -- 3.1. Indications -- 3.2. Early quantum cosmology -- 3.3. Loop quantum gravity -- 4. Quantum Cosmology -- 4.1. Representation -- 4.2. Quantum evolution -- 4.2.1. Difference equation -- 4.2.2. Meaning of the wave function -- 4.3. Densities -- 4.3.1. Quantization -- 4.3.2. Confirmation of indications -- 4.4. Phenomenology -- 4.4.1. Bounces -- 4.4.2. Inflation -- 5. Conclusions and Outlook -- References -- 15. Consistent Discrete Space-Time R. Gambini and J. Pullin -- 1. Introduction -- 2. Consistent Discretizations -- 3. The Rovelli Model -- 4. Applications in Classical and Quantum Cosmology -- 5. Fundamental Decoherence and Other Quantum Applications -- 6. Connections with Continuum Loop Quantum Gravity -- 7. Discussion and Frequently Asked Questions -- 8. Conclusions -- Acknowledgments -- References -- 16. Causal Sets and the Deep Structure of Spacetime F. Dowker -- 1. Introduction -- 2. Kinematics -- 2.1. The causal set -- 2.2. An analogy: discrete matter -- 2.3. Discrete spacetime -- 2.4. Reassessed in a quantal light -- 3. Dynamics -- 3.1. A histories framework for quantum causal sets -- 3.2. A classical warm up -- 3.3. The problem of general covariance -- 3.4. The problem of Now -- 3.5. The quantum case -- 4. Conclusions -- Acknowledgments -- References -- 17. The Twistor Approach to Space-Time Structures R. Penrose -- 1. Early Motivations and Fundamental Basis of Twistor Theory -- 2. Basic Twistor Geometry and Algebra -- 3. Momentum and Angular Momentum for Massless Particles -- 4. Massless Fields and their Twistor Contour Integrals -- 5. Twistor Sheaf Cohomology -- 6. The Non-Linear Graviton -- 7. The Googly Problem -- Further Developments -- Acknowledgments -- Notes -- References -- Index.
Abstract:
Thanks to Einstein's relativity theories, our notions of space and time underwent profound revisions about a 100 years ago. The resulting interplay between geometry and physics has dominated all of fundamental physics since then. This volume contains contributions from leading researchers, worldwide, who have thought deeply about the nature and consequences of this interplay. The articles take a long-range view of the subject and distill the most important advances in broad terms, making them easily accessible to non-specialists. The first part is devoted to a summary of how relativity theories were born (J Stachel). The second part discusses the most dramatic ramifications of general relativity, such as black holes (P Chrusciel and R Price), space-time singularities (H Nicolai and A Rendall), gravitational waves (P Laguna and P Saulson), the large scale structure of the cosmos (T Padmanabhan); experimental status of this theory (C Will) as well as its practical application to the GPS system (N Ashby). The last part looks beyond Einstein and provides glimpses into what is in store for us in the 21st century. Contributions here include summaries of radical changes in the notions of space and time that are emerging from quantum field theory in curved space-times (Ford), string theory (T Banks), loop quantum gravity (A Ashtekar), quantum cosmology (M Bojowald), discrete approaches (Dowker, Gambini and Pullin) and twistor theory (R Penrose).
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: