Cover image for Accelerator Physics, Technology And Applications : Selected Lectures Of Ocpa International Accelerator School 2002.
Accelerator Physics, Technology And Applications : Selected Lectures Of Ocpa International Accelerator School 2002.
Title:
Accelerator Physics, Technology And Applications : Selected Lectures Of Ocpa International Accelerator School 2002.
Author:
Chao, Alexander Wu.
ISBN:
9789812702807
Personal Author:
Physical Description:
1 online resource (639 pages)
Contents:
CONTENTS -- Preface -- Particle Accelerators: An Introduction Zhang Chuang -- 1. Historical Evolution of Particle Accelerators -- 1.1. Study of Matter and Particle Accelerators -- 1.2. Historical Roots and Development -- 1.3. Evolution of Acceleration Mechanisms -- 2. High Energy Frontier -- 2.1. Hadron Colliders -- 2.2. Hadron-Lepton Colliders -- 2.3. Electron-Positron Colliders -- 2.4. + - + Colliders -- 3. High Luminosity Frontier -- 3.1. B-Factory -- 3.2. DA NE and -Factory -- 3.3. BEPC and BEPCII -- 3.4. Neutrino-Factory -- 4. Multidisciplinary Platforms and Application -- 4.1. Synchrotron Radiation Sources -- 4.2. Free Electron Lasers -- 4.3. Spallation Sources -- 4.4. Application of Accelerators -- 5. Novel Acceleration Methods -- 5.1. Direct Acceleration with Laser -- 5.2. Two-Beam Accelerators -- 5.3. Wakefield Accelerators -- References -- A Guided Survey of Synchrotron Radiation Sources H. O. Moser -- 1. Introduction -- 2. Historical -- 3. Main features of synchrotron radiation -- 3.1. Spatial distribution of radiated power -- 3.2. Spectral distribution of radiated power -- 4. Generation of highly relativistic electron beams as sources for synchrotron radiation -- 4.1. Accelerator systems -- 4.2. Magnetic field device -- 5. Generations of synchrotron light sources -- 5.1. Some statistics on existing sources -- 5.2. Criteria to distinguish generations -- 5.3. Emittance and brilliance -- 5.4. 4th generation source concepts -- 6. Conclusion -- Acknowledgement -- References -- Transverse Beam Dynamics: Linear Optics Q. Qin -- 1 Introduction -- 2 Linear Betatron Motion -- 2.1 Coordinate System -- 2.2 Displacement and Divergence -- 2.3 Dipoles and Magnetic Rigidity -- 2.4 Quadrupoles -- 2.5 Alternating Gradient Focusing -- 2.6 Equation of Transverse Motion -- 2.7 Solution of Hill's Equation -- 2.8 Matrix Description.

2.9 Stability of Transverse Motion -- 2.10 Betatron Tunes and Envelope Functions -- 2.11 Transport Matrices for Individual Components in a Ring -- 2.12 Regular FODO Lattice -- 2.13 Liouville's Theorem and Emittance -- 2.14 Hamiltonian in an accelerator -- 3 Effect of Linear Magnet Imperfections -- 3.1 Errors from dipoles -- 3.2 Gradient errors -- 3.3 Working diagram and multipole field -- 4 Off Momentum Orbit -- 4.1 Dispersion function -- 4.2 H- function -- 4.3 Momentum compaction factor -- 4.4 Transition energy and the phase slip factor -- 5 Chromaticity -- 5.1 Definition and source of chromaticity -- 5.2 Chromaticity correction -- 6 Linear Coupling -- 6.1 Definition -- 6.2 Compensation of linear coupling -- 7 Applications of Errors -- 7.1 Measurement of -function -- 7.2 Measurement of dispersion function -- 7.3 Measurement of chromaticity -- 7.4 Measurement of linear coupling -- 8 Summary -- Acknowledgements -- References -- Transverse Beam Dynamics: Closed Orbit Correction and Injection Chin-Cheng Kuo -- 1. Introduction -- 2. Orbit Distortion due to Dipole Field Errors -- 2.1. Existence of the Closed Orbit -- 2.2. Statistical Estimation of the Closed Orbit Errors -- 2.3. Fourier Harmonics of the Closed Orbit -- 3. Measurement of the Closed Orbit -- 4. Closed Orbit Correction -- 4.1. Stopband and Harmonic Correction Methods -- 4.2. Local Bump Method -- 4.3. Micado Method -- 4.4. Singular-Value Decomposition Method -- 5. Off-Momentum Orbit and Correction -- 6. Real-Time Orbit Correction -- 7. Injection and Extraction -- 7.1. Single-Turn Injection -- 7.2. Multi-turn injection -- 7.3. Stripping injection scheme -- 7.4. Fast Extraction -- 7.5. Resonance extraction -- 7.6. Septum Units and Kicker -- 7.7. Timing for the injection and extraction -- 8. Summary and Acknowledgements -- References -- Transverse Beam Dynamics: Dynamic Aperture Q. Qin.

1. Introduction -- 2. Dynamic Aperture and Some Related Concepts -- 2.1. Motion of single particle -- 2.2. Errors -- 2.3. Physical aperture -- 2.4. Definition of dynamic aperture -- 2.5. Symplecticity -- 3. Determination of Dynamic Aperture -- 3.1. General description -- 3.2. Factors limiting dynamic aperture -- 1) Non-linear elements -- 2) Magnet errors -- 4. Analytical Methods to Dynamic Aperture -- 4.1. Resonance approach[3] -- 4.2. Non-resonant calculations[3] -- 4.3. Other treatments -- 5. Numerical Approaches to Dynamic Aperture -- 5.1. Thin lens model -- 5.2. Canonical integration method[13] -- 5.3. Lie transformation techniques -- 5.4. Other methods -- 5.5. Limitations of numerical tracking -- 6. Example of Particle Tracking -- 7. How to improve the dynamic aperture -- 7.1. Optimization of non-linear elements -- 7.2. Tolerance control -- 8. Summary -- Acknowledgement -- References -- Longitudinal Beam Dynamics - Energy Oscillation In An Electron Storage Rmg Y Jin -- 1. Introduction -- 2. Phase Motion Equation -- 3. Small Energy Oscillations -- 4. Large Energy Oscillations - Energy Aperture -- 5. Hamiltonian Formulation in Large Energy Oscillation -- References -- Photoinjectors Ilan Ben-Zvi -- 1. Introduction -- 2. Electron bunches for high brightness -- 3. Pulsed photoinjector -- 3.1. Layout of the BNL photoinjector -- 3.2. Performance considerations -- 3.3. Laser and photocathode considerations -- 3.4. Emittance and energy spread of the photoinjector -- 3.5. Emittance correction -- 4. CW photoinjector -- Acknowledgements -- References -- Synchrotron Radiation Lee C. Teng -- 1. Properties of the Synchrotron Radiation -- 1.1. Basic Electromagnetic Procedures and Formulas -- 1.2. Radiation from a Circular Orbit -- 1.3. Radiation from an Undulated Orbit -- 1.3.1 Orbit Kinematics -- 1.3.2 Radiation Wavelength.

1.3.3 Spectral-Angular Distribution -- Helical undulation -- Planar undulation -- 1.3.4 Features of radiation -- 2. Effects of Emission of Synchrotron Radiation on the Electron Beam -- 2.1. Damping of Oscillations -- 2.1.1 Damping of Vertical (y) Oscillation -- 2.1.2 Damping of Horizontal (x) Oscillation -- 2.1.3 Damping of Energy (E) Oscillation -- 2.2. Quantum Excitation -- 2.2.1 Excitation of Vertical (y) Oscillation -- 2.2.2 Excitation of Horizontal (x) Oscillation -- 2.2.3 Excitation of Energy (E) Oscillation -- 2.3. Quantum Lifetime -- References -- Lattice Design for Synchrotron Radiation Source Storage Rings Y. Jin -- 1. Introduction -- 2. Magnet Lattice Type for Synchrotron Radiation Source Storage Ring -- 3. Minimum Emittance Lattice for Synchrotron Radiation Storage Rings -- 4. Scaling Law for Lattice Design of a Storage Ring -- (1) Scaling Law -- (2) Demonstration for Scaling Law -- (3) Application Example for Scaling Law -- 5. Synchrotron Radiation Integrals -- 6. Dynamic Aperture -- Appendix -- References -- Spallation Neutron Source and Other High Intensity Proton Sources Weiren Chou -- 1. Introduction -- 1.1. What is a Spallation Neutron Source? -- 1.2. Parameter Choice of a Spallation Neutron Source -- 1.3. Linac-based vs. Synchrotron-based Spallation Neutron Source -- 1.4. Spallation Neutron Source vs. Other High Intensity Proton Sources -- 2. High Intensity Proton Sources: Existing, Under Construction, and Proposed -- 3. Design Concept of a Linac-based Spallation Neutron Source -- 3.1. Linac Front End -- 3.1.1. H source -- 3.1.2. Cockcrofi- Walton and RFQ -- 3.1.3. LEBT -- 3.1.4. Chopper -- 3.2. Linac -- 3.2.1. Low energypart(below 100MeV, B 0.9) -- 3.3. Accumulator -- 3.3.1. Beam loss control.

3.3.2. Collimators and remote handling -- 3.3.3. H injection -- 3.3.4. Lattice -- 3.3.5. e-p instability -- 3.3.6. Hardware -- 4. Design Concept of a Synchrotron-based Spallation Neutron Source -- 4.1. Lattice -- 4.2. Space Charge -- 4.3. Other Beam Dynamics Issues -- 4.4. Beam Loss, Collimation and Remote Handling -- 4.5. Slow Extraction -- 4.6. Hardware -- 4.6.1. Magnets -- 4.6.2. Power supplies -- 4.6.3. RF -- 4.6.4. Vacuum -- 4.6.5. Diagnostics -- 4.7. New Ideas -- 4.7.1. Inductive inserts -- 4.7.2. Induction synchrotron -- 4.7.3. Barrier RF stacking -- 4.7.4. Fixed field alternating gradient (FFAG) accelerator -- 4.7.5. Repetition rate increase in existing synchrotrons -- 5. Design Concept of a Proton Driver -- 5.1. Differences between a Proton Driver and a Spallation Neutron Source -- 5.2. How to Achieve Higher Energies -- 5.3. How to Obtain Short Bunch Lengths -- 6. Summary -- Acknowledgements -- Appendix A -- Appendix B -- References -- RF Electron Linac and Microtron Shu-Hong Wang -- 9. Introduction to the RF Electron Linac -- 9.1. Properties of the RF Electron Linac -- 9.2. Applications of the RF Electron Linac -- 2. Elementary Principles of the RF Electron Linac -- 2.1 Acceleration with the RF Linac -- 2.2 Essential Parameters of a TW Accelerating Structure -- 2.2.1 Shunt-Impedance Zs -- 2.2.2 Quality Factor Q -- 2.2.3 Z/Q -- 2.2.4 Group Velocity vg -- 2.2.5 Attenuation Constant -- 2.2.6 Working Frequency -- 2.2.7 Operation Mode -- 3. Traveling Wave Accelerating Structure -- 3.1 Constant Impedance Structure -- 3.2 Constant Gradient Structure -- 4. Standing Wave Accelerating Structure -- 4.1 Standing wave for acceleration -- 4.2 Stabilized SW accelerating structure -- 4.2.1 Properties of a structure with single-periodic chain -- 4.2.2 Properties of a biperiodic chain -- 4.3 Coupled-Cavity Linac (CCL) -- 5. Electron Pre-injector Linac.

5.1 Electron Gun and Beam Bunching System.
Abstract:
Originally invented for generating the first artificial nuclear reactions, particle accelerators have undergone, during the past 80 years, a fascinating development that is an impressive example of the inventiveness and perseverance of scientists and engineers. Since the early 1980s, accelerator science and technology has been booming. Today, accelerators are the prime tool for high energy physics to probe the structure of matter to an unknown depth. They are also, as synchrotron radiation sources, the most versatile tool for characterizing materials and processes and for producing micro- and nanostructured devices. The determination of the structure of large biomolecules is presently among the best examples of the application of synchrotron radiation. Finally, accelerators have grown more and more important for medicine, which is relying on them for advanced cancer therapy and radio-surgery. And there are more applications, including the generation of neutrons for materials science, the transmutation of nuclear waste with simultaneous production of electrical power, the sterilization of medical supplies and of foodstuff, and the inspection of trucks by customs or security services. This book is meant to provide basic training in modern accelerators for students, teachers, and interested scientists and engineers working in other fields. It is a result of the 3rd International Accelerator School, held in 2002 in Singapore under the auspices of the Overseas Chinese Physics Association (OCPA). Reputable experts, including a recent prize-winner, cover the field of cyclic and linear accelerators from the basic theoretical tools to forefront developments such as the X-ray free electron laser or the latest proton therapy facilities under construction. Accelerators, the art of building them, and the science for understanding their function have become a

very exciting field of research. This book conveys the excitement of the experts to the reader. The proceedings have been selected for coverage in:. • Index to Scientific & Technical Proceedings® (ISTP® / ISI Proceedings). • Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings). • CC Proceedings — Engineering & Physical Sciences.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: