Cover image for Discrete Gauge Theory : From Lattices To Tqft.
Discrete Gauge Theory : From Lattices To Tqft.
Title:
Discrete Gauge Theory : From Lattices To Tqft.
Author:
Oeckl, Robert.
ISBN:
9781860947377
Personal Author:
Physical Description:
1 online resource (215 pages)
Contents:
Contents -- Preface -- 1. Quantization of Discretized Gauge Theories -- 1.1 Continuum gauge theory -- 1.1.1 Configurations and observables -- 1.1.2 Yang-Mills theory and BF theory -- 1.2 Discretized gauge theory -- 1.2.1 Discretized manifold and connection -- 1.2.2 Yang-Mills theory -- 1.2.3 BF theory -- 1.2.4 BF-Yang-Mills -- 1.3 Path integral quantization -- 1.4 Circuit diagrams - baby version -- 1.4.1 Basics -- 1.4.2 Key identities -- 1.5 Diagrammatic representation -- 1.5.1 Partition function -- 1.5.2 Wilson loop observables -- 1.5.3 Gauge fixing -- 1.6 An exact solution: 2-dimensional lattice gauge theory -- 1.7 Strong-weak duality -- 1.8 The dual of abelian lattice gauge theory -- 2. Topology: Decomposition of Manifolds -- 2.1 Simplicial decompositions -- 2.1.1 Simplices -- 2.1.2 Euclidean complexes -- 2.1.3 Simplicial complexes -- 2.1.4 Triangulations -- 2.1.5 Pachner moves -- 2.2 Cellular decompositions -- 2.2.1 Cells and decompositions -- 2.2.2 Cellular moves -- 3. Categories and Diagrams -- 3.1 Monoidal categories with structure -- 3.2 Diagrammatic isotopy invariance -- 3.3 Semisimplicity and circuit diagrams -- 3.4 Key identities -- 3.5 Purification -- 4. Representation Theory: Groups & Hopf Algebras -- 4.1 Groups -- 4.1.1 Representation categories -- 4.1.2 Representative functions -- 4.1.3 Diagrams for representative functions -- 4.1.4 Integration and semisimplicity -- 4.1.5 Recovering the baby diagrams -- 4.2 Hopf algebras and quantum groups -- 4.2.1 Hopf algebras with extra structure -- 4.2.2 Representation categories -- 4.2.3 "Representative functions" -- 4.2.4 Integration and semisimplicity -- 4.2.5 Supergroups -- 4.3 Examples -- 4.3.1 Duality -- 4.3.2 Abelian groups -- 4.3.3 SU(2) -- 4.3.4 Supergroups -- 4.3.5 q-deformations -- 5. Cellular Gauge Theory -- 5.1 Symmetric cellular gauge theory.

5.2 Non-symmetric cellular gauge theory -- 5.2.1 Dimension 2 - pivotal categories -- 5.2.2 Dimension larger than 2 -- 5.2.3 Dimension 3 - spherical categories -- 5.2.4 Dimension 4 - ribbon categories -- 5.3 Wilson networks -- 5.3.1 Symmetric case -- 5.3.2 Non-symmetric case -- 5.4 Gauge fixing -- 5.4.1 Symmetric case -- 5.4.2 Non-symmetric case -- 6. Topological Quantum Field Theory -- 6.1 Boundaries and gluing -- 6.1.1 Boundary circuit diagram -- 6.1.2 Gluing manifolds and diagrams -- 6.1.3 Sum over labelings -- 6.1.4 Wilson networks -- 6.2 Topological quantum field theory -- 6.2.1 The delta move -- 6.2.2 The anomaly move -- 6.2.3 Invariants of manifolds -- 6.2.4 Invariants of ribbon knots -- 6.2.5 Cobordisms -- 7. Related Constructions -- 7.1 Spin networks -- 7.2 Spin foams and nj-symbols -- 7.3 Turaev-Viro invariant and Crane-Yetter invariant -- 7.4 The trace formalism -- 7.5 Modular categories and chain mail -- 8. Applications to Lattice Models and Quantum Gravity -- 8.1 Two theories with SU(2) -- 8.2 The dual of non-abelian lattice gauge theory -- 8.3 The chiral model -- 8.4 Spin networks in loop quantum gravity -- 8.5 Spin foam models of quantum gravity -- 8.6 The Barrett-Crane model -- 8.7 Three-dimensional quantum supergravity -- 8.8 Generating field theory -- 8.8.1 From Feynman diagrams to triangulations -- 8.8.2 Generating BF theory -- 8.8.3 Beyond BF theory -- 8.8.4 A version of lattice gauge theory -- 8.8.5 The Barrett-Crane model -- 8.9 Renormalization -- 8.9.1 Standard renormalization -- 8.9.2 General discretizations -- 8.9.3 Cellular decompositions and moves -- 8.9.4 Examples -- References -- Index.
Abstract:
This book provides an introduction to topological quantum field theory as well as discrete gauge theory with quantum groups. In contrast to much of the existing literature, the present approach is at the same time intuitive and mathematically rigorous, making extensive use of suitable diagrammatic methods. It provides a highly unified description of lattice gauge theory, topological quantum field theory and models of quantum (super)gravity. The reader is thus in a unique position to understand the relations between these subjects as well as the underlying groundwork.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: