Cover image for Femtosecond Beam Science.
Femtosecond Beam Science.
Title:
Femtosecond Beam Science.
Author:
Uesaka, Mitsuru.
ISBN:
9781860947421
Personal Author:
Physical Description:
1 online resource (439 pages)
Contents:
Contents -- Preface -- 1. Introduction -- 2. Femtosecond Beam Generation -- 2.1 Theory and Operation of Femtosecond Terawatt Lasers -- 2.1.1 Ultrashort pulses: theory and generation -- 2.1.1.1 Principle of mode locking for short pulse generation -- 2.1.1.2 Mode-locking techniques -- 2.1.2 Stretching and compressing laser pulses -- 2.1.2.1 Chirped pulse amplification principle -- 2.1.2.2 Stretcher/compressor operation -- 2.1.2.3 The Offner triplet configuration -- 2.1.2.4 Compressor subsystem -- 2.1.3 Amplification process -- 2.1.3.1 Regenerative amplification -- 2.1.3.2 Multipass amplification -- 2.1.3.3 20-TW laser system -- 2.2 Linear Accelerator -- 2.2.1 Photoinjectors -- 2.2.1.1 RF cavity and laser -- 2.2.1.2 Cathode and quantum efficiency -- 2.2.1.3 Emittance control -- 2.2.2 Magnetic bunch compression -- 2.2.2.1 Analogy with chirped pulse amplification (CPA) for femtosecond lasers -- 2.2.2.2 Theory -- 2.2.2.3 Experiment -- 2.2.2.4 Other subjects -- 2.2.2.5 Effect of CSR force -- 2.2.3 Velocity bunching -- 2.2.3.1 Theory -- 2.2.3.2 Application to the SPARC project -- 2.2.3.3 Experiments -- 2.2.4 Microbunching -- 2.2.4.1 Staged electron laser acceleration (STELLA) -- 2.2.4.2 Future potential issues -- 2.3 Synchrotron -- 2.3.1 Synchrotron -- 2.3.1.1 Bunch length in synchrotron and storage ring -- 2.3.1.2 Small p and intrinsic problems -- 2.3.1.3 Intrinsic bunch length in an electron storage ring -- 2.3.1.4 Microwave instability -- 2.3.2 Femtosecond e-beams in storage rings -- 2.3.2.1 Strong longitudinal focusing -- 2.3.2.2 Coherent synchrotron radiation and stability criteria -- 2.3.2.3 Selected results of computer simulations -- 2.3.2.4 Proposed applications of femtosecond elec- tron bunches in storage rings -- 2.4 Laser Plasma Acceleration -- 2.4.1 Electron -- 2.4.1.1 Laser plasma wake field acceleration.

2.4.1.2 Laser injected laser accelerator concept (LILAC) -- 2.4.1.3 Plasma cathode: colliding pulse optical injection -- 2.4.1.4 Electron injection due to Langmuir wave breaking -- 2.4.1.5 Plasma cathode by self-injection -- 2.4.2 Ion -- 2.4.2.1 Mechanism -- 2.4.2.2 Low intensity laser case -- 2.4.2.3 Moderate intensity laser case -- 2.4.2.4 Ultra-intense laser case -- 2.4.2.5 Ion acceleration in a solitary wave -- 2.4.3 X-ray -- 2.4.3.1 Mechanism of laser plasma short X-ray generation -- 2.4.3.2 Measurement -- 2.4.3.3 Numerical analysis to enhance intensity -- 2.4.3.4 Nonlinear Thomson scattering -- 2.4.4 Terahertz (THz) radiation -- 2.4.4.1 Magnetic field enhancement scheme -- 2.4.4.2 Terawatt laser excitation scheme -- 2.4.5 Neutron -- 2.4.5.1 Cluster science -- 2.4.5.2 Characteristics of laser-cluster interaction -- 2.4.5.3 Neutron generation -- 2.4.5.4 Numerical simulation -- 2.4.5.5 High efficiency neutron source -- 2.4.6 Positron -- 2.4.6.1 Processes of positron production using lasers -- 2.4.6.2 Laser-solid interaction -- 2.4.6.3 Laser-gas-jet interaction -- 2.4.6.4 Radioactive isotopes -- 2.5 Inverse Compton Scattering X-ray Generation -- 2.5.1 Laser synchrotron source and its applications -- 2.5.1.1 Laser synchrotron source -- 2.5.1.2 Fundamental aspects of laser synchrotron source -- 2.5.1.3 Application of LSS: Polarized photon and positron production -- 2.5.2 Intra-cavity Thomson scattering -- 2.5.2.1 Thomson scattering in the Jefferson Lab infrared FEL -- 2.5.2.2 Measurements of intra-cavity Thomson X-ray -- 2.5.2.3 FEL upgrade Thomson X-ray possibilities -- 2.5.2.4 Conclusions and future program -- Acknowledgments -- 2.6 Beam Slicing by Femtosecond Laser -- 2.7 Free Electron Lasers -- 2.7.1 Femtosecond infrared free electron laser -- 2.7.2 Femtosecond X-ray free electron laser -- 2.8 Energy Recovery Linac -- Bibliography.

3. Diagnosis and Synchronization -- 3.1 Pulse Shape Diagnostics -- 3.1.1 Streak camera -- 3.1.1.1 Principle of the streak camera -- 3.1.1.2 Consistent characteristic impedance matched deflection circuit -- 3.1.1.3 Measurement example -- 3.1.2 Coherent radiation interferometer -- 3.1.2.1 Technique -- 3.1.2.2 Michelson interferometer -- 3.1.2.3 Bunch length measurements with coherent diffraction radiation -- 3.1.2.4 Pulse shape reconstruction procedure -- 3.1.3 Far infrared polychromator -- 3.1.3.1 Single-shot measurement -- 3.1.3.2 10-channel polychromator -- 3.1.3.3 Bunch length measurement -- 3.1.4 Fluctuation -- 3.1.4.1 Theory -- 3.1.4.2 Discussion -- 3.1.4.3 Experiment -- Acknowledgment -- 3.1.4.4 Fluctuation in time domain -- 3.1.5 Overall comparison -- 3.1.5.1 Theoretical discussion -- 3.1.5.2 Experimental discussion -- 3.1.6 New trends -- 3.1.6.1 Electro-optical method -- 3.1.6.2 T-cavity method -- 3.1.7 Low jitter X-ray streak camera -- 3.2 Synchronization -- 3.2.1 Laser vs. linac -- 3.2.1.1 S-band linacs (thermionic and RF gun vs. active-mode-locked Ti:Sapphire laser) -- 3.2.1.2 Upgraded timing system -- 3.2.1.3 Timing jitter source in laser oscillators -- 3.2.1.4 Timing jitter source in a linac -- 3.2.1.5 Overall evaluation -- 3.2.2 Laser vs. synchrotron -- 3.2.2.1 Synchronization scheme and timing monitor -- 3.2.2.2 Performance of the synchronization at Spring-8 -- 3.2.2.3 Synchronous mechanical chopper -- 3.2.2.4 Time-resolved measurements using an X-ray streak camera -- 3.2.2.5 Prospects for femtosecond timing control -- Bibliography -- 4. Applications -- 4.1 Radiation Chemistry -- 4.1.1 Subpicosecond pulse radiolysis -- 4.1.1.1 History of picosecond and subpicosecond pulse radiolysis -- 4.1.1.2 Time resolution of pulse radiolysis -- 4.1.1.3 Subpicosecond pulse radiolysis system.

4.1.1.4 Jitter compensation system for highly time-resolved measurements -- 4.1.1.5 Early processes of radiation chemistry -- 4.1.1.6 Application to materials for nanotechnology -- 4.1.2 Radiolysis by RF gun -- 4.1.2.1 Supercritical xenon chemistry -- 4.1.2.2 Ultrafast water chemistry -- Acknowledgments -- 4.1.3 Supercritical water -- 4.1.3.1 Supercritical water and its importance -- 4.1.3.2 Pulse radiolysis experimental setup for supercritical water -- 4.1.3.3 Examples of pulse radiolysis studies on supercritical water -- 4.1.3.4 Future subjects -- Acknowledgments -- 4.2 Time-Resolved X-ray Diffraction -- 4.2.1 Phonon dynamics in semiconductors -- 4.2.1.1 Ultrafast microscopic dynamics -- 4.2.1.2 Strain wave in crystals -- 4.2.1.3 Experiments -- 4.2.2 Shock wave propagation in semiconductors -- 4.2.2.1 Shock compression science -- 4.2.2.2 X-ray diffraction of shocked solids -- 4.2.2.3 Laser shock -- 4.2.2.4 Laser plasma hard X-ray pulses -- 4.2.2.5 Ultrafast time-resolved X-ray diffraction of shock compressed silicon -- 4.2.2.6 Summary -- 4.2.3 Fast X-ray shutter using laser-induced lattice expansion at SR source -- 4.2.3.1 Optical switching of X-rays using transient expansion of crystal lattice -- 4.2.3.2 X-ray shutter using optical switch -- 4.3 Protein Dynamics -- 4.4 Molecular Dynamics Simulation -- 4.4.1 Ultrafast phenomena and numerical modeling -- 4.4.2 Molecular dynamics simulation including light interactions -- 4.4.3 Quantum molecular dynamics simulation including light interactions -- Bibliography -- Index.
Abstract:
This book explores recent developments and advances in femtosecond beam science, making these more accessible through contributions from leaders in the field. Each contribution aims to make the particular area of femtosecond beam science accessible through explaining the particular field, reviewing recent advances worldwide, and featuring important results and possible future uses of femtosecond pulses in the field. Femtosecond beam science is expected to lead to the development of technology realizing dynamic microscopy, that is, the visualization of atomic motions, chemical reactions, protein dynamics and other microscopic dynamics. Advances have enabled the visualizations of phonons, thermal expansion and shock-wave propagation by advanced time-resolved X-ray diffraction, at a time resolution of 10 picoseconds. These achievements will extend to the development of femtosecond X-ray sources and fourth generation synchrotron light sources. Dynamic microscopy promises to be one of the most important issues in dynamic nanotechnology in the future. As a result, the overview of femtosecond beam science provided by this book will be useful.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: