Cover image for Physics Of Intensity Dependent Beam Instabilities.
Physics Of Intensity Dependent Beam Instabilities.
Title:
Physics Of Intensity Dependent Beam Instabilities.
Author:
Ng, K. Y.
ISBN:
9789812703392
Personal Author:
Physical Description:
1 online resource (795 pages)
Contents:
Contents -- Preface -- 1 Wakes and Impedances -- 1.1 Wake Fields -- 1.1.1 Two Approximations -- 1.1.2 Panofsky-Wenzel Theorem -- 1.1.3 Cylindrically Symmetric Chamber -- 1.2 Coupling Impedances -- 1.3 Parasitic Loss -- 1.3.1 Coherent Loss -- 1.3.2 Incoherent Loss -- 1.4 Exercises -- 1.5 Appendix: A Collection of Wakes and Impedances -- References -- Bibliography -- 2 Potential-Well Distortion -- 2.1 Longitudinal Phase Space -- 2.1.1 Momentum Compaction -- 2.1.2 Equations of Motion -- 2.1.2.1 Synchrotron Oscillation -- 2.2 Mode Approach -- 2.2.1 Vlasov Equation -- 2.2.2 Coasting Beams -- 2.3 Static Solution -- 2.4 Reactive Force -- 2.4.1 Space-Charge Impedance -- 2.4.2 Other Distributions -- 2.5 Bunch-Shape Distortion -- 2.5.1 Haissinski Equation -- 2.5.2 Elliptical Phase-Space Distribution -- 2.6 Synchrotron Tune Shift -- 2.6.1 Incoherent Synchrotron Tune Shift -- 2.6.2 Coherent Synchrotron Tune Shift -- 2.7 Potential-Well Distortion Compensation -- 2.7.1 Space-Charge Cancellation -- 2.7.2 Ferrite Insertion -- 2.8 Potential-Well Distortion in Barrier RF -- 2.8.1 RF Barriers -- 2.8.2 Asymmetric Beam Profile -- 2.9 Exercises -- Bibliography -- 3 Betatron Tune Shifts -- 3.1 Static Transverse Forces -- 3.1.1 Electric Image Forces -- 3.1.2 Magnetic Image Forces -- 3.2 Space-Charge Self-Force -- 3.2.1 Incoherent Self-Force Tune Shift -- 3.2.2 Tune-Shift Distribution -- 3.2.3 Incoherence versus Coherence -- 3.3 Tune Shift for a Beam -- 3.3.1 Image Formation -- 3.3.2 Coasting Beams -- 3.3.3 Bunched Beams -- 3.4 Other Vacuum Chamber Geometries -- 3.4.1 Circular Vacuum Chamber -- 3.4.2 Elliptical Vacuum Chamber -- 3.4.3 Rectangular Vacuum Chamber -- 3.4.4 Closed Yoke -- 3.5 Connection with Impedance -- 3.5.1 Impedance from Images -- 3.5.2 Impedance from Self-Force -- 3.6 Exercises -- Bibliography -- 4 Envelope Equation -- 4.1 The Integer Resonance.

4.2 The Kapchinsky-Vladimirsky Equation -- 4.2.1 Least-Square Value -- 4.2.2 One Dimension -- 4.2.3 Two Dimensions -- 4.3 Collective Oscillations of Beams -- 4.3.1 One Dimension -- 4.3.2 Two Dimensions -- 4.3.2.1 Equivalent- Unijorm-Beam -- 4.4 Simulations -- 4.4.1 One Dimension -- 4.4.2 Two Dimensions -- 4.5 Application to Synchrotrons -- 4.6 Exercises -- Bibliography -- 5 Longitudinal Microwave Instability for Coasting Beams -- 5.1 Microwave Instability -- 5.1.1 Dispersion Relation -- 5.1.2 Stability Curve and Keil-Schnell Criterion -- 5.1.3 Landau Damping -- 5.1.4 Self-Bunching -- 5.1.5 Overshoot -- 5.2 Observation and Cure -- 5.3 Ferrite Insertion and Instability -- 5.3.1 Microwave Instability -- 5.3.2 Cause of Instability -- 5.3.3 Heating the Ferrite -- 5.3.4 Application at the PSR -- 5.4 Exercises -- Bibliography -- 6 Longitudinal Microwave Instability for Short Bunches -- 6.1 Bunch Modes -- 6.1.1 A Particle in Synchrotron Oscillation -- 6.1.2 Coherent Azimuthal Modes -- 6.1.3 Measurement of Coherent Modes -- 6.2 Collective Instability -- 6.2.1 Dispersion Relation of a Sideband -- 6.2.2 Landau Damping of a Sideband -- 6.2.2.1 Equi-Growth Contours -- 6.2.3 Stability of a Bunch -- 6.2.3.1 Higher Azimuthal Modes -- 6.2.3.2 Coherent Shift from Mean Incoherent Frequency -- 6.2.3.3 Bi- Gaussian Distribution -- 6.3 Coupling of Azimuthal Modes -- 6.4 Bunch Lengthening and Scaling Law -- 6.5 Sawtooth Instability -- 6.5.1 Possible Cure -- 6.5.1.1 Precaution at The Next Linear Collider (NLC) -- 6.6 Exercises -- Bibliography -- 7 Beam-Loading and Robinson's Instability -- 7.1 Equivalent Circuit -- 7.2 Beam-Loading in an Accelerator Ring -- 7.2.1 Steady-State Compensation -- 7.3 Robinson's Stability Criteria -- 7.3.1 Phase Stability at Low Intensity -- 7.3.2 Phase Stability at High Intensity -- 7.3.3 Robinson's Damping -- 7.4 Transient Beam-Loading.

7.4.1 Fundamental Theorem of Beam-Loading -- 7.4.2 From Transient to Steady State -- 7.4.2.1 Limiting Case with 60 -+ 0 -- 7.4.2.2 Limiting Case with Tb >> Tf -- 7.4.3 Transient Beam-Loading of a Bunch -- 7.4.3.1 Gaussian Distribution -- 7.4.3.2 Parabolic Distribution -- 7.4.3.3 Cosine-Square Distribution -- 7.4.3.4 Cosine Distribution -- 7.4.4 Transient Compensation -- 7.4.4.1 Coupled-Bunch Instabilities -- 7.5 Examples -- 7.5.1 Fermilab Main Ring -- 7.5.2 Fermilab Booster -- 7.5.3 Fermilab Main Injector -- 7.5.4 Proposed Prebooster -- 7.5.4.1 The Ramp Curve -- 7.5.4.2 The RF System -- 7.5.4.3 Fixed-Frequency RF Cavities -- 7.6 Exercises -- Bibliography -- 8 Longitudinal Coupled-Bunch Instabilities -- 8.1 Sacherer's Integral Equation -- 8.1.1 Frequency Domain -- 8.1.2 Synchrotron Tune Shift -- 8.1.2.1 Water-Bag Model -- 8.1.3 Robinson's Instability -- 8.1.3.1 Point-Bunch Theory -- 8.2 Time Domain Derivation -- 8.3 Observation and Cures -- 8.3.1 Higher-Harmonic Cavity -- 8.3.2 Passive Landau Cavity -- 8.3.3 Rf-Voltage Modulation -- 8.3.4 Uneven Fill -- 8.3.4.1 Modulation Coupling -- 8.3.4.2 Landau Damping -- 8.3.4.3 Applications -- 8.4 Exercises -- Bibliography -- 9 Transverse Instabilities -- 9.1 Transverse Focusing and Transverse Wake -- 9.2 Betatron Fast and Slow Waves -- 9.3 Separation of Transverse and Longitudinal Motions -- 9.4 Sacherer's Integral Equation -- 9.5 Solution of Sacherer's Integral Equations for Radial Modes -- 9.5.1 Chebyshev Modes -- 9.5.2 Legendre Modes -- 9.5.3 Hermite Modes -- 9.5.4 Longitudinal Integral Equation -- 9.6 Frequency Shifts and Growth Rates -- 9.6.1 Broadband Impedance -- 9.6.2 Narrowband Impedance -- 9.7 Approximate Solutions and Effective Impedances -- 9.7.1 Sacherer's Sinusoidal Modes -- 9.8 Chromaticity Frequency Shift -- 9.9 Exercises -- Bibliography -- 10 Transverse Coupled-Bunch Instabilities.

10.1 Resistive-Wall Instabilities -- 10.1.1 Resistive-Wall Impedance at Low Frequencies -- 10.1.2 Bypass Inductance -- 10.2 Derivation of Resistive-Wall Impedance -- 10.2.1 Wave Equations -- 10.2.2 Source Fields -- 10.2.3 Thin-Wall Model -- 10.2.4 Thick-Wall Model -- 10.2.5 Layered Wall -- 10.2.6 Laminations -- 10.3 Applications -- 10.3.1 Fermilab Booster -- 10.3.1.1 Transverse Coupled-Bunch Instabilities -- 10.3.1.2 Tune-Shift Measurement -- 10.3.2 Bench Measurement -- 10.4 Narrow Resonances -- 10.5 Exercises -- Bibliography -- 11 Mode-Coupling Instabilities -- 11.1 Transverse Mode-Coupling -- 11.2 Space-Charge and Mode-Coupling -- 11.3 Two-Particle Model -- 11.4 Longitudinal Mode-Coupling -- 11.4.1 Long Bunches -- 11.4.2 Short Bunches -- 11.5 TMCI for Long Bunches -- 11.5.1 High Energy Accelerators -- 11.5.2 TMCI Threshold for Present Proton Machines -- 11.5.3 Possible Observation -- 11.6 Exercises -- Bibliography -- 12 Head-Tail Instabilities -- 12.1 Transverse Head-Tail -- 12.1.1 Two-Particle Model -- 12.1.2 For a Bunch -- 12.1.3 Application to the Tevatron -- 12.1.3.1 Measurements by Ivanov, Burov, and Tan -- 12.2 Longitudinal Head-Tail -- 12.3 Exercises -- Bibliography -- 13 Landau Damping -- 13.1 Harmonic Beam Response -- 13.2 Shock Response -- 13.3 Landau Damping -- 13.4 Transverse Bunched Beam Instabilities -- 13.5 Longitudinal Bunched Beam Instabilities -- 13.6 Transverse Unbunched Beam Instabilities -- 13.6.1 Resistive-Wall Instabilities -- 13.6.1.1 Instability of Proton Beam -- 13.6.1.2 Instabilities of Antiproton Beam -- 13.7 Longitudinal Unbunched Beam Instabilities -- 13.8 Beam Transfer Function and Impedance Measurements -- 13.9 Decoherence versus Landau damping -- 13.9.1 Landau damping of a beam -- 13.9.2 Longitudinal Decoherence -- 13.10 Exercises -- Bibliography -- 14 Beam Breakup -- 14.1 Two-Particle Model -- 14.2 Long Bunch.

14.2.1 Balakin-Novokhatsky-Smirnov Damping -- 14.2.2 Autophasing -- 14.3 Linac -- 14.3.1 Adiabatic Damping -- 14.3.2 Detuned Cavity Structure -- 14.3.3 Multi-Bunch Breakup -- 14.3.4 Analytic Treatment -- 14.3.4.1 Amount of Energy Chirp -- 14.3.4.2 Emittance Growth -- 14.3.4.3 The Quality Factor -- 14.3.5 Misaligned Linac -- 14.3.5.1 Comparison with Simulations -- 14.3.5.2 Application -- 14.4 Quadrupole Wake -- 14.4.1 Two-Particle Model -- 14.4.2 Observation -- 14.5 Exercises -- Bibliography -- 15 Two-Stream Instabilities -- 15.1 Trapped Electrons -- 15.1.1 Single-Electron Mechanics -- 15.1.2 Electron Bounce Frequency -- 15.1.2.1 Long bunches -- 15.1.2.2 Beam Leaked into Gap -- 15.1.2.3 A Train of Short Bunches -- 15.1.3 Coupled-Centroid Oscillation -- 15.1.3.1 Landau Damping -- 15.1.4 Production of Electrons -- 15.1.4.1 Primary Electrons -- 15.1.4.2 Secondary-Electron Yield -- 15.1.4.3 Electron-Cloud Build-up and Multipactoring -- 15.1.4.4 Simulations -- 15.1.4.5 Betatron Tune Shifts -- 15.1.5 Discussion and Conclusion -- 15.2 Fast Beam-Ion Instability -- 15.2.1 The Linear Theory -- 15.2.1.1 The Ion Equation of motion -- 15.2.1.2 The Trapped-Ion Distribution -- 15.2.1.3 The Electron Equation of Motion -- 15.2.1.4 Coupled- Ion- Beam Solution -- 15.2.1.5 A Train of Bunches -- 15.2.1.6 Spectrum of Electron Beam -- 15.2.1.7 Possible Cures -- 15.2.2 Application to Electron/Positron Rings -- 15.2.2.1 Observation at ALS -- 15.2.3 Application to Fermilab Linac -- 15.2.3.1 Ionization Cross section -- 15.2.3.2 Ion Bounce Frequencies -- 15.2.3.3 Growth Times -- 15.2.3.4 Comments -- 15.2.4 Application to Fermilab Designed Damping Ring -- 15.3 Half-Integer Stopband -- 15.4 Exercises -- Bibliography -- 16 Instabilities Near and Across Transition -- 16.1 Bunch Shape Near Transition -- 16.1.1 Nonadiabatic Time -- 16.1.2 Simple Estimation.

16.1.3 More Sophisticated Approximation.
Abstract:
This book provides a comprehensive treatment of intensity dependent particle beam instabilities in accelerating rings. Written for researchers, the material is also suitable for use as a textbook in an advanced graduate course for students studying accelerator physics. The presentation starts with a brief review of the basic concept of wake potentials and coupling impedances in the vacuum chamber followed by a discussion on static and dynamic solutions of their effects on the particle beams. Special emphasis is placed separately on proton and electron machines. Other special topics of interest covered include Landau damping, Balakin–Novokhatsky–Smirnov damping, Sacherer's integral equations, Landau cavity, saw-tooth instability, Robinson stability criteria, beam loading, transition crossing, two-stream instabilities, and collective instability issues of isochronous rings. After the formulation of an instability, readers are provided a thorough description of one or more experimental observations together with a discussion of the cures for the instability. Although the book is theory oriented, the use of mathematics has been minimized. The presentation is intended to be rigorous and self-contained with nearly all the formulas and equations derived.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: