Cover image for Stochastic Analysis : Classical And Quantum: Perspectives Of White Noise Theory.
Stochastic Analysis : Classical And Quantum: Perspectives Of White Noise Theory.
Title:
Stochastic Analysis : Classical And Quantum: Perspectives Of White Noise Theory.
Author:
Hida, Takeyuki.
ISBN:
9789812701541
Personal Author:
Physical Description:
1 online resource (311 pages)
Contents:
Contents -- Preface -- Part I -- White Noise Functional Approach to Polymer Entanglements C. C. Bernido and M. V. Carpio-Bernido -- Abstract -- 1 Introduction -- 2 Two Chainlike Macromolecules -- 3 Entanglement with an Intermolecular Potential V (r) -- 4 White Noise Path Integral Approach -- 5 Length-dependent Potentials -- 6 Chirality of Entangled Polymers -- 7 Examples of a Modulating Function -- 7.1 f(s) = k cos (VS) -- 7.2 f(s) = ksp -- 8 Conclusion -- Acknowledgement -- References -- White Noise Analysis, Quantum Field Theory, and Topology A . Hahn -- 1 Introduction -- 2 Chern-Simons models, heuristic path integrals, and topological invariants -- 2.1 Chern-Simons models -- 2.2 Heuristic path integrals and topological invariants -- 2.3 A "Paradox" -- 2.4 The computation of the WLOs: A short overview -- 2.5 Open Questions -- 3 White noise analysis applied to Chern-Simons models on M = R3 in axial gauge -- 3.1 The basic idea -- 3.2 Step 1: Making sense of ...d -- 3.3 Step 2: Making sense of -- 3.4 Step 3: Existence proof and computation of WLO(L -- ) -- 3.5 Comparison with the results obtained by the other approaches -- 4 White noise analysis applied to Chern-Simons models on M = S2 x S1 in torus gauge -- 4.1 Torus Gauge -- 1. Option: -- 2. Option (better): -- 4.2 The Faddeev-Popov-Determinant of Torus gauge fixing -- 4.3 A Formula for Scs(A + Bdt) -- 4.4 Introduction of a scalar product -- 4.5 The decomposition = -- 4.6 A preliminary heuristic formula for WLO(L) -- 4.7 The final heuristic formula for WLO(L) -- 4.8 The Program -- 4.9 Some Details for Step 1 -- 5 Conclusions and Outlook -- References -- A Topic on Noncanonical Representations of Gaussian Processes Y, Hibino -- 1 Introduction -- 2 Noncanonical representations -- Remark -- Acknowledgments. -- References.

Integral Representation of Hilbert-Schmidt Operators on Boson Fock Space U. C. Ji -- 1 Introduction -- 2 Preliminaries -- 2.1 White Noise Triplet -- 2.2 Admissible Triplet -- 3 White Noise Operators -- 3.1 Operator Symbol and Integral Kernel Operators -- 3.2 Chaotic Expansion of Hilbert-Schmidt Operators -- 4 Integral Representation of Hilbert-Schmidt Operators -- 4.1 Quantum Stochastic Integrals -- 4.2 Integral Representation -- 4.3 Integrands in Integral Representation -- References -- The Dawn of White Noise Analysis I. Kubo -- 1. Short history of Brownian motion -- 2. Hida's research before 1975 -- 1. Properties of Paths -- 2. Canonical Representation -- 3. Projective limit of spheres -- 4. Non-linear Analysis -- 5. Infinite Dimensional Rotation Group -- 3. White Noise Analysis -- 4. Comments -- 1. O(c0) -- 2. Sobolev Norms -- 3. Generalized Random Variables -- 4. Renormalization -- 5. Path -- Acknowledgement -- References -- White Noise Stochastic Integration H.-H. Kuo -- 1. Brownian motion and white noise -- 2. White noise theory -- 3. White noise stochastic integrals -- 4. Hitsuda-Skorokhod integrals -- 5. Extensions of Ito's formula -- 6. Stochastic integral equations -- 7. Perspectives of white noise stochastic integration -- (1) Hitsuda-Skorokhod integral -- (2) Solutions of white noise stochastic integral equations -- (3) Extensions of Ito's formula -- (4) Clark-Ocone formula -- (5) Girsanov theorem -- Acknowledgments -- References -- Connes-Hida Calculus and Bismut-Quillen Superconnections R. Leandre and H. Ouerdiane -- I. Introduction -- II. Cyclic homology and white noise analysis -- III. The J.L.O. cocycle as a white noise distribution -- IV. References -- A Quantum Decomposition of Levy Processes Y.-J. Lee and H.-H. Shih -- Abstract -- 1 Introduction -- 2 Levy white noise measure and a representation of Levy processes.

3 Test and generalized Levy white noise functionals -- Segal-Bargmann transform -- Annihilation and creation operators -- 4 Quantum decomposition of Levy processes -- References -- Generalized Entanglement and its Classification T. Matsuoka -- 1. Introduction -- 2. Operational structure of quantum entanglement -- 2.1. Pure state -- 2.2. Classification of states via entangling operator -- 3. Degree of entanglement via quantum mutual entropy -- 3.1. Characterization of a pure state by degree of entanglement -- 3.2. Degree of entanglement for entangled PPT states -- References -- A White Noise Approach to Fractional Brownian Motion D. Nualart -- 1 Introduction -- 2 White noise analysis and Hida distributions -- 3 Derivative of a Volterra process -- 4 Fractional Brownian motion -- 5 Stochastic calculus with respect to the fBm -- 5.1 Stochastic calculus of variations with respect to fBm -- 5.2 Divergence and symmetric integrals for H > -- 5.3 Ito's formula for the divergence integral for H > -- 5.4 Stochastic integration with respect to fBm for H < -- 6 White noise analysis and divergence integrals -- References -- Adaptive Dynamics in Quantum Information and Chaos M. Ohya -- 1 Introduction -- 2 Adaptive Dynamics -- 3 Entropic Chaos Degree -- 4 Algorithm Computing Entropic Chaos Degree -- 4.1 Logistic Map -- Tinkerbell map -- 4.2 ECD with memory -- 5 Description of Chaos by Adaptive Dynamics -- 5.1 Chaos degree with adaptivity -- References -- Micro-Macro Duality in Quantum Physics I. Ojima -- Abstract -- 1 Why & what is Micro-Macro Duality? -- 2 Basic scheme for Micro/Macro correspondence -- 2.1 Definition of sectors and order parameters -- 2.2 Selection criteria to choose an appropriate family of sectors -- 3 Sectors and symmetry: Galois-Fourier duality -- 3.1 Hierarchy of symmetry breaking patterns and augmented algebras.

4 From [thermality geometry] towards [history of Nature] -- References -- White Noise Measures Associated to the Solutions of Stochastic Differential Equations H. Ouerdiane -- Mathematics Subject CIassifications (2000): 60H40 -- 1 Introduction -- 2 Preliminaries -- 3 Application to white noise analysis -- 3.1 S-Transform -- 3.2 Relation of this theorem with previous results -- 4 Convolution calculus -- 4.1 Convolution operators -- 4.2 Symbols of operators -- 4.3 Convolution product of operators -- 5 Applications to stochastic differential equations -- 5.1 Asymptotic estimates for white noise measures -- 5.2 Tail estimates for solutions of stochastic differential equations -- References -- A Remark on Sets in Infinite Dimensional Spaces with Full or Zero Capacity J. Ren and M. Rockner -- Abstract -- 1. INTRODUCTION, FRAMEWORK AND A RESULT ON SETS WITH FULL CAPACITY -- 2. PROOF OF THEOREM 1.4 -- 3. A RESULT ON SETS WITH ZERO CAPACITY -- ACKNOWLEDGEMENT -- REFERENCES -- An Infinite Dimensional Laplacian in White Noise Theory K. Saitd -- Mathematics Subject CIassifications (2000): 60H40 -- Introduction -- 1 White noise functionals of Gaussian noise and Poisson noise -- 2 The Levy Laplacian acting on white noise functionals -- 3 The Levy Laplacian acting on WNF-valued functions -- 4 An infinite dimensional stochastic process associated with the Levy Laplacian -- Acknowledgments -- References -- Invariance of Poisson Noise Si Si, A. Tsoi and Win Win Htay -- 1. Introduction -- 2. Preliminaries -- 3. Invariance of p under transformations on parameter space -- 3.1. Transformations in the Rd-parameter case -- 3.2. Td-parameter case -- 4. Transformations that preserve conditional Poisson measures -- 5. A characterization of Poisson noise -- References -- Nonequilibrium Steady States with Bose-Einstein Condensates S. Tasaki and T. Matsui -- 1 Introduction.

2 Bosonic Junction System -- 3 Nonequilibrium Steady States -- 4 Boson on Lattice -- 5 NESS -- (a) Free Boson. -- (b) Impurity Scattering -- (c) Two-Dimensional Layer -- Acknowledgments -- Appendix -- References -- Multidimensional Skew Reflected Diffusions G. Trutnau -- Summary. -- 1 The generalized Dirichlet form and its capacity -- 2 Construction of an associated diffusion -- 3 The Revuz correspondence -- 4 Semimartingale characterization -- 5 Identification of the process -- 6 Recurrence -- References -- On Quantum Mutual Type Entropies and Quantum Capacity N . Watanabe -- 1. Quantum channels -- 1.1. Noisy optical channel -- 2. Ohya S-mixing entropy and Ohya mutual entropy -- 3. Comparison of various quantum mutual type entropies -- 4. Quantum capacity -- References -- Part II -- White Noise Calculus and Stochastic Calculus L. Accardi and A. Boukas -- 1. Introduction -- 2. Elemental processes -- 3. White noise approach to classical and quantum stochastic calculus -- 4. Nonlinear powers of white noise -- 5. Emergence of the square of white noise in different contexts -- 6. Higher powers of white noise -- 7. No go theorems -- Appendix: Meixner's classification theorem -- 8. Orthogonal generating functions -- 9. The equations for f and for 21 = 21-l -- 10. Meixner's parametrization -- 11. Solutions of the equation for v -- 12. Solutions of the equation for f -- 13. The equations for u -- 14. Moments of the Meixner measures -- 15. Bibliography.
Abstract:
This volume includes papers by leading mathematicians in the fields of stochastic analysis, white noise theory and quantum information, together with their applications. The papers selected were presented at the International Conference on Stochastic Analysis: Classical and Quantum held at Meijo University, Nagoya, Japan from 1 to 5 November 2004. The large range of subjects covers the latest research in probability theory.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: