Cover image for Stochastic Analysis And Mathematical Physics (samp/anestoc 2002).
Stochastic Analysis And Mathematical Physics (samp/anestoc 2002).
Title:
Stochastic Analysis And Mathematical Physics (samp/anestoc 2002).
Author:
Rebolledo, Rolando.
ISBN:
9789812702364
Personal Author:
Physical Description:
1 online resource (313 pages)
Contents:
CONTENTS -- Preface -- Rigorous Feynman Path Integrals, with Applications to Quantum Theory, Gauge Fields, and Topological Invariants S. Albeverio, A . Hahn and A. N. Sengupta -- 1. Introduction -- 2. Rigorous Feynman path integrals and probabilistic functional integrals. Some applications to quantum theory -- 2.1. A short reminder of Wiener integrals and some of their applications to quantum theory -- 2.2. Rigorous Feynman Path integrals -- 2.2.1. Definition and properties of mathematical Feynman path integrals -- 2.2.2. An infinite dimensional version of the stationary phase method applied to a mathematical realization of Feynman's path integrals -- 2.2.3. Applications to the Schrodinger equation -- 2.3. The White Noise Analysis framework -- 3. The problem of gauge fields. Yang-Mills theory and Chern- Simons theory -- 3.1. Principal Bundles -- 3.2. Connection -- 3.3. Parallel Transport -- 3.4. Holonomy -- 3.5. The spaces K'(P -- V ) -- 3.6. Curvature and Covariant Derivatives -- 3.7. Gauge Transformations -- 3.8. The action of B on A -- 3.9. The Yang-Mills action -- 3.10. Yang-Mills as a dynamical system -- 3.11. Lagmngian to Hamiltonian -- 3.12. Comparison with Yang-Mills equations -- 3.13. Moment Map for the Gauge Group Action -- 3.14. The Chern-Simons Action -- 4. Quantization of Yang-Mills and Chern-Simons models -- 4.1. Quantization of Yang-Mills models -- 4.2. Quantization of Chern-Simons models -- 4.2.1. Axial Gauge fixing for Chern-Simons models on R3 -- 4.2.2. The Chern-Simons path integral on R3 in axial gauge as a generalized distribution -- 4.2.3. Loop-smearing -- 4.2.4. Framing -- 4.2.5. Admissible Links and admissible Fkamings -- 4.2.6. Computation of the WLOs -- 4.2.7. Examples -- Acknowledgements: -- References -- Analytic Yeh-Feynman Integral and Generalized Conditional Yeh-Wiener Integral J. S. Chang -- 1. Introduction.

2. Preliminiaries -- 3. Banach algebra S(L2(Q)) -- 4. Analytic Yeh-Feynman integrals -- 5. Generalized conditional Yeh-Wiener integral -- References -- The Selfadjoint Lie-Trotter-Kato Product Formula in Operator Norm and Time-Sliced Approximation to Imaginary-time Path Integral T. Ichinose -- 1. Introduction -- 2. Outline of Proof -- 3. The imaginary-time path integral for the heat equation -- 4. Speculative Comment -- Acknowledgements. -- References -- Vassiliev Invariants and Functional Integration without Integration L. H. Kauflman -- 1. Introduction -- 2. Vassiliev Invariants and Invariants of Rigid Vertex - Graphs -- 3. Integration without integration -- 3.1. Functional Derivatives -- 4. Vassiliev Invariants and Witten's Functional Integral -- References -- Wiener Analysis and Cyclic Homology R. Le'andre -- 1. Introduction -- 2. The first calculus -- 3. The second calculus -- References -- On the Affine Metaplectic Group O. Rusk -- 1. Introduction -- 2. Preliminaries -- 2.1. The Boson Fock algebra -- 2.2. The symplectic group -- 3. The complexification (H) -- 3.1. The affine symplectic group -- 4. The Fock space representations -- 4.1. Exponentiability -- 4.2. Examples -- References -- Open Quantum Systems and Classical Trajectories R. Rebolledo -- 1. Introduction -- 2. Open Quantum Systems -- 2.1. The approach through Feynman integrals -- 2.2. Master Equations and Quantum Markov semigroups -- 3. Classical reduction of a quantum Markov semigroup defined on a von Neumann algebra -- 3.1. The reduction by mmimal abelian subalgebras -- 3.2. Reduction by a bounded normal operator -- 3.3. Reduction by an unbounded self-adjoint operator -- 3.4. Construction of the canonical Markov process associated to the reduced semigroup -- 3.5. Master equations and form generators -- 4. Examples -- 4.1. Quantum Brownian Motion -- 4.2. Quantum exclusion model.

4.2.1. The initial space -- 4.2.2. The algebra (h0) -- 4.2.3. Configurations -- 4.2.4. The quantum Markov semigroup -- Acknowledgements -- References -- Stochastic Oscillatory Integrals: Asymptotics and Exact Expressions for Quadratic Phase Function S. Taniguchi -- Introduction -- 1. Analyticity -- 2. Asymptotics and localization -- 3. Explicit expression and exponential decay -- 4. Cameron-Martin transform and Jacobi equation -- References -- Fourier-Feynman Transforms on Wiener Spaces I. Yoo, K. S. Chang, D. H. Cho, B. S. Kim and T. S. Song -- 1. Introduction -- 2. Fourier-Feynman transform on classical Wiener space -- 3. Fourier-Feynman transform on abstract Wiener space -- 4. Fourier-Feynman transform on the space of abstract Wiener space valued continuous functions -- References -- Infrared Bounds and Bose-Einstein Condensation: Study of a Class of Diagonalizable Perturbations of the Free Boson Gas M. Corgini and H. Torres -- 1. Introduction -- 2. Basic Mathematical Notions -- 3. Bose Einstein Condensation -- 4. Previous Results -- 5. Huang Yang Luttinger Model System -- 6. A Class of Diagonalizable Perturbations of the F'ree Boson Gas -- References -- Quadratic Wiener Functionals and Dynamics on Grassmannians: The Framework and the Simplest Example K. Hara -- 1. Introduction -- 2. Framework -- 3. An example - LQvy's stochastic area -- References -- Feynman's Operational Calculi Blending Instantaneous and Continuous Phenomena in Feynman's Operational Calculi G. W. Johnson and L. Nielsen -- 1. Introduction -- 2. Time-Ordering within the Disentangling Algebra -- 3. Definition of the Disentangling Map -- the General Case -- 4. Calculation in Some Special Cases - Especially Discrete Case -- References -- On Quantum Stochastic Dynamics. Some Recent Developments A . W. Majewski -- 1. Introduction -- 2. Classical systems -- 3. Quantum spin systems.

4. Non-commutative Lp-spaces. -- 5. Quantum stochastic dynamical semigroups -- 6. Quantum diffusions for spin systems. -- 7. Discussion -- 7.1. Acknowledgements -- References -- Non Adapted Transformations of the Wiener Measure A . B. Cruzeiro -- 1. Introduction -- 2. Non linear transformations of the Wiener measure -- 3. Differentiation on the Wiener space. -- 3.1. The divergence operator -- 3.2. Non linear transformations -- 4. Tangent processes -- 5. Integration by parts on the path space of a Riemannian manifold -- 6. An asymptotic estimate for the vertical derivatives of the horizontal Laplacian -- References -- Feynman Integrals and White Noise Analysis J. L. Silva and L. Streit -- 1. Introduction -- 2. Review of white noise analysis -- 3. The free Feynman integrand -- 4. The perturbed Feynman integrand -- 5. The Feynman integrand for the harmonic oscillator -- 6. The Feynman integrand for a class of unbounded potentials -- Acknowledgments -- Bibliography.
Abstract:
The book collects a series of papers centered on two main streams: Feynman path integral approach to Quantum Mechanics and statistical mechanics of quantum open systems. Key authors discuss the state-of-the-art within their fields of expertise. In addition, the volume includes a number of contributed papers with new results, which have been thoroughly refereed. The contributions in this volume highlight emergent research in the area of stochastic analysis and mathematical physics, focusing, in particular on Feynman functional integral approach and, on the other hand, in quantum probability. The book is addressed to an audience of mathematical physicists, as well as specialists in probability theory, stochastic analysis and operator algebras. The proceedings have been selected for coverage in:. • Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings). • CC Proceedings — Engineering & Physical Sciences.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: