Cover image for Subsea Pipelines and Risers.
Subsea Pipelines and Risers.
Title:
Subsea Pipelines and Risers.
Author:
Bai, Yong.
ISBN:
9780080524191
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (841 pages)
Contents:
Front Cover -- Subsea Pipelines and Risers -- Copyright Page -- Table of Contents -- Foreword -- Foreword to "Pipeliners and Risers" Book -- Preface -- Part I: Mechanical Design -- Chapter 1. Introduction -- 1.1 Introduction -- 1.2 Design Stages and Process -- 1.3 Design Through Analysis (DTA) -- 1.4 Pipeline Design Analysis -- 1.5 Pipeline Simulator -- 1.6 References -- Chapter 2. Wall-thickness and Material Grade Selection -- 2.1 Introduction -- 2.2 Material Grade Selection -- 2.3 Pressure Containment (hoop stress) Design -- 2.4 Equivalent Stress Criterion -- 2.5 Hydrostatic Collapse -- 2.6 Wall Thickness and Length Design for Buckle Arrestors -- 2.7 Buckle Arrestor Spacing Design -- 2.8 References -- Chapter 3. Buckling/Collapse of Deepwater Metallic Pipes -- 3.1 Introduction -- 3.2 Pipe Capacity under Single Load -- 3.3 Pipe Capacity under Couple Load -- 3.4 Pipes under Pressure Axial Force and Bending -- 3.5 Finite Element Model -- 3.6 References -- Chapter 4. Limit-state based Strength Design -- 4.1 Introduction -- 4.2 Out of Roundness Serviceability Limit -- 4.3 Bursting -- 4.4 Local Buckling/Collapse -- 4.5 Fracture -- 4.6 Fatigue -- 4.7 Ratcheting -- 4.8 Dynamic Strength Criteria -- 4.9 Accumulated Plastic Strain -- 4.10 Strain Concentration at Field Joints Due to Coatings -- 4.11 References -- Part II: Pipeline Design -- Chapter 5. Soil and Pipe Interaction -- 5.1 Introduction -- 5.2 Pipe Penetration in Soil -- 5.3 Modeling Friction and Breakout Forces -- 5.4 References -- Chapter 6. Hydrodynamics around Pipes -- 6.1 Wave Simulators -- 6.2 Choice of Wave Theory -- 6.3 Mathematical Formulations Used in the Wave Simulators -- 6.4 Steady Currents -- 6.5 Hydrodynamic Forces -- 6.6 References -- Chapter 7. Finite Element Analysis of In-situ Behavior -- 7.1 Introduction.

7.2 Description of the Finite Element Model -- 7.3 Steps in an Analysis and Choice of Analysis Procedure -- 7.4 Element Types Used in the Model -- 7.5 Non-linearity and Seabed Model -- 7.6 Validation of the Finite Element Model -- 7.7 Dynamic Buckling Analysis -- 7.8 Cyclic In-place Behaviour during Shutdown Operations -- 7.9 References -- Chapter 8. Expansion, Axial Creeping, Upheaval/Lateral Buckling -- 8.1 Introduction -- 8.2 Expansion -- 8.3 Axial Creeping of Flowlines Caused by Soil Ratcheting -- 8.4 Upheaval Buckling -- 8.5 Lateral Buckling -- 8.6 Interaction between Lateral and Upheaval Buckling -- 8.7 References -- Chapter 9. On-bottom Stability -- 9.1 Introduction -- 9.2 Force Balance: the Simplified Method -- 9.3 Acceptance Criteria -- 9.4 Special Purpose Program for Stability Analysis -- 9.5 Use of FE Analysis for Intervention Design -- 9.6 References -- Chapter 10. Vortex-induced Vibrations (VIV) and Fatigue -- 10.1 Introduction -- 10.2 Free-span VIV Analysis Procedure -- 10.3 Fatigue Design Criteria -- 10.4 Response Amplitude -- 10.5 Modal Analysis -- 10.6 Example Cases -- 10.7 References -- Chapter 11. Force Model and Wave Fatigue -- 11.1 Introduction -- 11.2 Fatigue Analysis -- 11.3 Force Model -- 11.4 Comparisons of Frequency Domain and Time Domain Approaches -- 11.5 Conclusions and Recommendations -- 11.6 References -- Chapter 12. Trawl Impact, Pullover and Hooking Loads -- 12.1 Introduction -- 12.2 Trawl Gears -- 12.3 Acceptance Criteria -- 12.4 Impact Response Analysis -- 12.5 Pullover Loads -- 12.6 Finite Element Model for Pullover Response Analyses -- 12.7 Case Study -- 12.8 References -- Chapter 13. Pipe-in-pipe and Bundle Systems -- 13.1 Introduction -- 13.2 Pipe-in-pipe System -- 13.3 Bundle System -- 13.4 References -- Chapter 14. Seismic Design -- 14.1 Introduction.

14.2 Pipeline Seismic Design Guidelines -- 14.3 Conclusions -- 14.4 References -- Chapter 15. Corrosion Prevention -- 15.1 Introduction -- 15.2 Fundamentals of Cathodic Protection -- 15.3 Pipeline Coatings -- 15.4 CP Design Parameters -- 15.5 Galvanic Anodes System Design -- 15.6 References -- Chapter 16. Åsgard Flowlines Design Examples -- 16.1 Introduction -- 16.2 Wall-thickness and Linepipe Material Selection -- 16.3 Limit State Strength Criteria -- 16.4 Installation and On-bottom Stability -- 16.5 Design for Global Buckling, Fishing Gear Loads and VIV -- 16.6 Åsgard Transport Project -- 16.7 References -- Part III: Flow Assurance -- Chapter 17. Subsea System Engineering -- 17.1 Introduction -- 17.2 Typical Flow Assurance Process -- 17.3 System Design and Operability -- 17.4 References -- Chapter 18. Hydraulics -- 18.1 Introduction -- 18.2 Composition and Properties of Hydrocarbons -- 18.3 Emulsion -- 18.4 Phase Behavior -- 18.5 Hydrocarbon Flow -- 18.6 Slugging and Liquid Handling -- 18.7 Pressure Surge -- 18.8 Line Sizing -- 18.9 References -- Chapter 19. Heat Transfer and Thermal Insulation -- 19.1 Introduction -- 19.2 Heat Transfer Fundamentals -- 19.3 U-value -- 19.4 Steady State Heat Transfer -- 19.5 Transient Heat Transfer -- 19.6 Thermal Management Strategy and Insulation -- 19.7 References -- 19.8 Appendix: U-value and Cooldown Time Calculation Sheet -- Chapter 20. Hydrates -- 20.1 Introduction -- 20.2 Physics and Phase Behavior -- 20.3 Hydrate Prevention -- 20.4 Hydrate Remediation -- 20.5 Hydrate Control Design Philosophies -- 20.6 Recover of Thermodynamic Hydrate Inhibitors -- 20.7 References -- Chapter 21. Wax and Asphaltenes -- 21.1 Introduction -- 21.2 Wax -- 21.3 Wax Management -- 21.4 Wax Remediation -- 21.5 Asphaltenes -- 21.6 Asphaltenes Control Design Philosophies -- 21.7 References -- Part IV: Riser Engineering.

Chapter 22. Design of Deepwater Risers -- 22.1 Description of a Riser System -- 22.2 Riser Analysis Tools -- 22.3 Steel Catenary Riser for Deepwater Environments -- 22.4 Stresses and Service Life of Flexible Pipes -- 22.5 Drilling and Workover Risers -- 22.6 References -- Chapter 23. Design Codes for Risers and Subsea Systems -- 23.1 Introduction -- 23.2 Design Criteria for Deepwater Metallic Risers -- 23.3 Limit State Design Criteria -- 23.4 Loads, Load Effects and Load Cases -- 23.5 Improving Design Codes and Guidelines -- 23.6 Regulations and Standards for Subsea Production Systems -- 23.7 References -- Chapter 24. VIV and Wave Fatigue of Risers -- 24.1 Introduction -- 24.2 Fatigue Causes -- 24.3 Riser VIV Analysis and Suppression -- 24.4 Riser Fatigue due to Vortex-induced Hull Motions (VIM) -- 24.5 Challenges and Solutions for Fatigue Analysis -- 24.6 Conclusions -- 24.7 References -- Chapter 25. Steel Catenary Risers -- 25.1 Introduction -- 25.2 SCR Technology Development History -- 25.3 Material Selection, Wall-thickness Sizing, Source Services and Clap Pipe -- 25.4 SCR Design Analysis -- 25.5 Welding Technology, S-N Curves and SCF for Welded Connections -- 25.6 UT Inspections and ECA Criteria -- 25.7 Flexjoints, Stressjoints and Pulltubes -- 25.8 Strength Design Challenges and Solutions -- 25.9 Fatigue Design Challenges and Solutions -- 25.10 Installation and Sensitivity Considerations -- 25.11 Integrity Monitoring and Management Systems -- 25.12 References -- Chapter 26. Top Tensioned Risers -- 26.1 Introduction -- 26.2 Top Tension Risers Systems -- 26.3 TTR Riser Components -- 26.4 Modelling and Analysis of Top Tensioned Risers -- 26.5 Integrated Marine Monitoring System -- 26.6 References -- Chapter 27. Steel Tube Umbilical & Control Systems -- 27.1 Introduction -- 27.2 Control Systems.

27.3 Cross-sectional Design of the Umbilical -- 27.4 Steel Tube Design Capacity Verification -- 27.5 Extreme Wave Analysis -- 27.6 Manufacturing Fatigue Analysis -- 27.7 In-place Fatigue Analysis -- 27.8 Installation Analysis -- 27.9 Required On-seabed Length for Stability -- 27.10 References -- Chapter 28. Flexible Risers and Flowlines -- 28.1 Introduction -- 28.2 Flexible Pipe Cross Section -- 28.3 End Fitting and Annulus Venting Design -- 28.4 Flexible Riser Design -- 28.5 References -- Chapter 29. Hybrid Risers -- 29.1 Introduction -- 29.2 General Description of Hybrid Risers -- 29.3 Sizing of Hybrid Risers -- 29.4 Preliminary Analysis -- 29.5 Strength Analysis -- 29.6 Fatigue Analysis -- 29.7 Structural and Environmental Monitoring System -- 29.8 References -- Chapter 30. Drilling Risers -- 30.1 Introduction -- 30.2 Floating Drilling Equipments -- 30.3 Key Components of Subsea Production Systems -- 30.4 Riser Design Criteria -- 30.5 Drilling Riser Analysis Model -- 30.6 Drilling Riser Analysis Methodology -- 30.7 References -- Chapter 31. Integrity Management of Flexibles and Umbilicals -- 31.1 Introduction -- 31.2 Failure Statistics -- 31.3 Risk Management Methodology -- 31.4 Failure Drivers -- 31.5 Failure Modes -- 31.6 Integrity Management Strategy -- 31.7 Inspection Measures -- 31.8 Monitoring -- 31.9 Testing and Analysis Measures -- 31.10 Steel Tube Umbilical Risk Analysis and Integrity Management -- 31.11 References -- Part V: Welding and Installation -- Chapter 32. Use of High Strength Steel -- 32.1 Introduction -- 32.2 Review of Usage of High Strength Steel Linepipes -- 32.3 Potential Benefits and Disadvantages of High Strength Steel -- 32.4 Welding of High Strength Linepipe -- 32.5 Cathodic Protection -- 32.6 Fatigue and Fracture of High Strength Steel -- 32.7 Material Property Requirements -- 32.8 References.

Chapter 33. Welding and Defect Acceptance.
Abstract:
Updated edition of a best-selling title Author brings 25 years experience to the work Addresses the key issues of economy and environment Marine pipelines for the transportation of oil and gas have become a safe and reliable way to exploit the valuable resources below the world's seas and oceans. The design of these pipelines is a relatively new technology and continues to evolve in its quest to reduce costs and minimise the effect on the environment. With over 25years experience, Professor Yong Bai has been able to assimilate the essence of the applied mechanics aspects of offshore pipeline system design in a form of value to students and designers alike. It represents an excellent source of up to date practices and knowledge to help equip those who wish to be part of the exciting future of this industry.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: