Cover image for Quantitative Geochemistry.
Quantitative Geochemistry.
Title:
Quantitative Geochemistry.
Author:
Zou, Haibo.
ISBN:
9781860948206
Personal Author:
Physical Description:
1 online resource (305 pages)
Contents:
Contents -- Preface -- 1 . Batch Melting -- 1.1 Overview of Melting Models -- 1.2 Modal Batch Melting -- 1.3 Nonmodal (Eutectic) Batch Melting -- 1.3.1 Eutectic batch melting with constant Ki -- 1.3.2 Eutectic batch melting with linear change of Ki -- 1.3.3 Eutectic batch melting with linear change of Ki and linear change of pi -- 1.4 Incongruent Batch Melting -- 1.4.1 Incongruent batch melting with constant Ki -- 1.4.2 Incongruent batch melting with linear change of Ki -- 1.4.3 Incongruent batch melting with linear change of Ki and linear change of qi -- 1.5 Summary -- References -- 2 . Fractional Melting -- 2.1 Modal Fractional Melting with Constant D -- 2.2 Nonmodal (Eutectic) Fractional Melting -- 2.2.1 Eutectic fractional melting with constant Ki -- 2.2.2 Eutectic fractional melting with linear Ki -- 2.3 Incongruent Fractional Melting -- 2.3.1 Incongruent fractional melting with constant Ki -- 2.3.2 Incongruent fractional melting with linear Ki -- 2.3.3 Incongruent fractional melting with linear Ki and linear qi -- 2.4 Summary of Equations -- Appendix 2A Runga-Kutta Method -- References -- 3 . Dynamic Melting -- 3.1 Modal Dynamic Melting with Constant D -- 3.2 Eutectic Dynamic Melting -- 3.2.1 Eutectic dynamic melting with constant Ki -- 3.2.2 Eutectic dynamic melting with linear change of Ki -- 3.3 Incongruent Dynamic Melting -- 3.3.1 Incongruent dynamic melting with constant Ki -- 3.3.2 Incongruent dynamic melting with linear change of Ki -- 3.3.3 Incongruent dynamic melting with linear Ki and linear qi -- 3.4 Summary of Equations -- References -- 4 . Open-system Melting -- 4.1 Open-system Batch Melting (OBM) -- 4.1.1 OBM with one-time instantaneous addition of melt -- 4.1.2 OBM with continuous addition of melt -- 4.1.3 OBM with continuous addition of fluids and solid -- 4.2 Open-system Dynamic Melting (ODM).

4.2.1 ODM with continuous addition of melt -- 4.2.2 ODM with continuous addition of melt and solid -- 4.3 Summary of Equations -- References -- 5 . Uranium-series Disequilibrium Modeling -- 5.1 Single-stage Radioisotope Decay -- 5.2 Decay Series -- 5.2.1 Bateman equation -- 5.2.2 Secular equilibrium -- 5.3 U-series Disequilibrium Produced by Dynamic Melting -- 5.4 Forward Modeling Results -- 5.5 Discussions -- 5.5.1 The Meanings of melting rate and melt extraction rate -- 5.5.2 U-series modeling and the degree of partial melting -- 5.5.3 Activity ratios in the melt when f < before melt extraction starts -- 5.5.4 U-series modeling versus trace element modeling -- 5.6 Chromatographic Melt Transport -- 5.7 Summary of Equations -- References -- 6 . Crystallization, Assimilation, Mixing -- 6.1 Crystallization -- 6.1.1 Fractional crystallization -- 6.1.1.1 Constant D -- 6.1.1.2 Linear D -- 6.1.2 Equilibrium crystallization -- 6.2 Assimilation-fractional Crystallization -- 6.3 Two-component Mixing -- 6.3.1 Derivation -- 6.3.2 Analysis of the two-component mixing equation -- 6.4 Summary of Equations -- References -- 7 . Inverse Geochemical Modeling -- 7.1 Batch Melting Inversion of Melt Compositions -- 7.1.1 Concentration ratio method -- 7.1.2 Linear regression method -- 7.2 Dynamic Melting Inversion of Melt Compositions -- 7.3 U-Th Disequilibrium Inversion of Melt Compositions -- 7.4 Batch Melting Inversion of Whole-rock Residues -- 7.4.1 Concentration ratio method -- 7.4.2 Linear regression method -- 7.5 Batch Melting Inversion of Residual Clinopyroxenes -- 7.5.1 Concentration ratio method -- 7.5.2 Linear regression method -- Appendix 7A Newton-Raphson Method for Two Unknowns -- References -- 8 . Error Analysis -- 8.1 Random Errors -- 8.2 Statistical Treatment of Random Uncertainties -- 8.2.1 Mean and standard deviation -- 8.2.2 Weighted averages.

8.2.3 Variance, covariance and correlated errors -- 8.3 Probability Distributions -- 8.3.1 Norma/Gauss distribution -- 8.3.2 Poisson distribution -- 8.3.3 Binomial distribution -- 8.4 Systematic Errors -- 8.5 Summary -- References -- 9 . Linear Least Square Fitting -- 9.1 Least Squares: No Errors in Xi -- Yi Subject to Equal Errors -- 9.2 Least Squares: No Errors in Xi -- Yi Subject to Weighed Errors -- 9.3 Both Xi and Yi are Subject to Weighed Errors -- 9.4 Both Xi and Yi are Subject to Weighed Correlated Errors -- 9.4.1 Formulation -- 9.4.2 Error analysis -- 9.5 Summary of Linear Least Square Fitting of the Line y = a + bx -- References -- 10 . Mass Fractionation in Ionization Processes -- 10.1 Mass Fractionation Laws -- 10.1.1 Linear law -- 10.1.2 Power law -- 10.1.3 Exponential law -- 10.2 Internal and External Correction of Mass Fractionation -- 10.2.1 Internal correction -- 10.2.2 External correction -- 10.3 Dynamic Measurements of Nd and Sr Isotopic Compositions -- 10.3.1 Sr double collector analysis -- 10.3.2 Nd double collector analysis -- 10.3.3 Nd triple collector analysis -- References -- 11 . Isotope Dilution -- 11.1 Single Spike Method -- 11.1.1 Single spike equation using isotope abundances -- 11.1.2 Single spike equation using isotope ratios -- I 1.1.3 Optimization -- 1 1.2 Double Spike Method -- 1 1.3 Two Double Spikes -- 11.4 Summary of Equations -- References -- 12 . Pb Isotope Modeling -- 12.1 Why is the Tera-Wasserburg Concordia Diagram Concave Upward? -- 12.2 Why is the Conventional Concordia Plot Concave Down? -- 12.3 Why is the Holms-Houtermans Model Concave Down? -- 12.4 Why is the Two-stage Model of Pb Evolution also Concave Down? -- 12.5 Why is the U-Th-Pa Concordia Diagram Concave Down Everywhere? -- 12.6 Some Calculations Related to Pb Isotope Geochemistry -- 12.6.1 What is Concordia age?.

12.6.2 Error propagation related to Pb isotopes -- References -- 13 . Geochemical Kinematics and Dynamics -- 13.1 Diffusion -- 13.1.1 Formulation -- 13.1.2 Variation of diffusion coefficient -- 13.2 Advection and Percolation -- 13.3 Bubble Growth by Mass Transfer of Volatiles -- 13.3.1 Formulation -- 13.3.2 Quasi-static approximation -- 13.4 Bubble Growth by Decompression -- 13.4.1 Thin shell of over-pressured viscous melt -- 13.4.1.1 Instantaneous decompression -- 13.4.1.2 Linear decompression -- 13.4.2 Thin shell melt model during instantaneous decompression -- 13.5 The Trajectories of a Volcanic Bomb -- 13.5.1 No drag -- 13.5.2 Linear drag -- Appendix 13A Error Function -- References.
Abstract:
Modern geochemistry possesses not only the vigor of geology and chemistry but also the rigor of mathematics. This book presents quantitative treatments of a wide range of fundamental problems related to geochemistry and geology. It shows that trace elements, isotopes, and equations are integrative tools in modern geochemistry for studying various Earth processes. In many chapters, simple models are presented first, and more parameters are gradually added so that the sophisticated models can be perceived as natural outgrowths of simple ones. The book will help scientists and graduate students in Earth Sciences improve their capacity to understand, apply, criticize, and appreciate the available models and possibly to develop their own models. This understanding will provide penetrating insights into fundamental principles in geochemistry, geology, analytical chemistry, and mass spectrometry as well as any other fields in the natural sciences.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: