Cover image for Mosfet Modeling For Vlsi Simulation : Theory And Practice.
Mosfet Modeling For Vlsi Simulation : Theory And Practice.
Title:
Mosfet Modeling For Vlsi Simulation : Theory And Practice.
Author:
Arora, Narain.
ISBN:
9789812707581
Personal Author:
Physical Description:
1 online resource (633 pages)
Series:
International Series on Advances in Solid State Electronics & Technology
Contents:
Contents -- Foreword -- Preface -- List of Symbols -- Acronyms -- 1 Overview -- 1.1 Circuit Design with MOSFETs -- 1.2 MOSFET Modeling -- 1.3 Model Parameter Determination -- 1.4 Interconnect Modeling -- 1.5 Subjects Covered -- References -- 2 Review of Basic Semiconductor and pn Junction Theory -- 2.1 Energy Band Model -- 2.2 Intrinsic Semiconductor -- 2.2.1 Fermi level -- 2.3 Extrinsic or Doped Semiconductor -- 2.3.1 Generation-Recombination -- 2.3.2 Quasi-Fermi Level -- 2.4 Electrical Conduction -- 2.4.1 Carrier Mobility -- 2.4.2 Resistivity and Sheet Resistance -- 2.4.3 Transport Equations -- 2.4.4 Continuity Equation -- 2.4.5 Poisson's Equation -- 2.5 pn Junction at Equilibrium -- 2.5.1 Built-in Potential -- 2.5.2 Depletion Width -- 2.6 Diode Current-Voltage Characteristics -- 2.6.1 Limitation of the Diode Current Model -- 2.6.2 Bulk Resistance -- 2.6.3 Junction Breakdown Voltage -- 2.7 Diode Dynamic Behavior -- 2.7.1 Junction Capacitance -- 2.7.2 Diffusion Capacitance -- 2.7.3 Small Signal Conductance -- 2.8 Real pn Junction -- 2.9 Diode Circuit Model -- 2.10 Temperature Dependent Diode Model Parameters -- 2.10.1 Temperature Dependence of I , -- 2.10.2 Temperature Dependence of 4bi -- 2.10.3 Temperature Dependence of Cjo -- References -- 3 MOS Transistor Structure and Operation -- 3.1 MOSFET Structure -- 3.2 MOSFET Characteristics -- 3.2.1 Punchthrough -- 3.2.2 MOSFET Capacitances -- 3.2.3 Small-Signal Behavior -- 3.2.4 Device Speed -- 3.3 MOSFET Scaling -- 3.4 Hot-Carrier Effects -- 3.5 VLSI Device Structures -- 3.5.1 Gate Material -- 3.5.2 Nonuniform Channel Doping -- 3.5.3 Source-Drain Structures -- 3.5.4 Device Isolation -- 3.5.5 CMOS Process -- 3.6 MOSFET Parasitic Elements -- 3.6.1 Source-Drain Resistance -- 3.6.2 Source/Drain Junction Capacitance -- 3.6.3 Gate Overlap Capacitances -- 3.7 MOSFET Length and Width Definitions.

3.7.1 Effective or Electrical Channel Length -- 3.7.2 Effective or Electrical Channel Width -- 3.8 MOSFET Circuit Models -- References -- 4 MOS Capacitor -- 4.1 MOS Capacitor with No Applied Voltage -- 4.1.1 Work Function -- 4.1.2 Oxide Charges -- 4.1.3 Flat Band Voltage -- 4.2 MOS Capacitor at Non-Zero Bias -- 4.2.1 Accumulation -- 4.2.2 Depletion -- 4.2.3 Inversion -- 4.3 Capacitance of MOS Structures -- 4.3.1 Low Frequency C-V Plot -- 4.3.2 High Frequency C-V Plot -- 4.3.3 Deep Depletion C-V Plot -- 4.4 Deviation from Ideal C-V Curves -- 4.5 Anomalous C-V Curve (Polysilicon Depletion Effect) -- 4.6 MOS Capacitor Applications -- 4.7 Nonuniformly Doped Substrate and Flat Band Voltage -- 4.7.1 Temperature Dependence of Vfb -- References -- 5 Threshold Voltage -- 5.1 MOSFET with Uniformly Doped Substrate -- 5.2 Nonuniformly Doped MOSFET -- 5.2.1 Enhancement Type Device -- 5.2.2 Depletion Type Device -- 5.3 Threshold Voltage Variations with Device Length and Width -- 5.3.1 Short-Channel Effect -- 5.3.2 Narrow-Width Effect -- 5.3.3 Drain Induced Barrier Lowering (DIBL) Effect -- 5.3.4 Small-Geometry Effect -- 5.4 Temperature Dependence of the Threshold voltage -- References -- 6 MOSFET DC Model -- 6.1 Drain Current Calculations -- 6.2 Pao-Sah Model -- 6.3 Charge-Sheet Model -- 6.4 Piece-Wise Drain Current Model for Enhancement Devices -- 6.4.1 First Order Model -- 6.4.2 Bulk-Charge Model -- 6.4.3 Square-Root Approximation -- 6.4.4 Drain Current Equation with Square-Root Approximation -- 6.4.5 Subthreshold Region Model -- 6.4.6 Limitations of the Model -- 6.5 Drain Current Model for Depletion Devices -- 6.6 Effective Mobility -- 6.6.1 Mobility Degradation Due to the Gate Voltage -- 6.6.2 Mobility Degradation Due to the Drain Voltage -- 6.7 Short-Geometry Models -- 6.7.1 Linear Region Model -- 6.7.2 Saturation Voltage.

6.7.3 Saturation Region-Channel Length Modulation -- 6.7.4 Subthreshold Model -- 6.7.5 Continuous Model -- 6.8 Impact of Source-Drain Resistance on Drain Current -- 6.9 Temperature Dependence of the Drain Current -- 6.9.1 Temperature Dependence of Mobility -- References -- 7 Dynamic Model -- 7.1 Intrinsic Charges and Capacitances -- 7.1.1 Meyer Model -- 7.1.2 Drawbacks of the Meyer Model -- 7.2 Charge-Based Capacitance Model -- 7.3 Long-Channel Charge Model -- 7.3.1 Capacitances -- 7.4 Short-Channel Charge Model -- 7.4.1 Capacitances -- 7.5 Limitations of the Quasi-Static Model -- 7.6 Small-Signal Model Parameters -- References -- 8 Modeling Hot-Carrier Effects -- 8.1 Substrate Current Model -- 8.2 Gate Current Model -- 8.3 Correlation of Gate and Substrate Current -- 8.4 Mechanism of MOSFET Degradation -- 8.5 Measure of Degradation-Device Lifetime -- 8.6 Impact of Degradation on Circuit Performance -- 8.7 Temperature Dependence of Device Degradation -- References -- 9 Data Acquisition and Model Parameter Measurements -- 9.1 Data Acquisition -- 9.1.1 Data for DC Models -- 9.1.2 Data for AC Models -- 9.1.3 MOS Capacitor C-V Measurement -- 9.2 Gate-Oxide Capacitance Measurement -- 9.2.1 Optical Method-Ellipsometry -- 9.2.2 Electrical Method -- 9.3 Measurement of Doping Profile in Silicon -- 9.3.1 Capacitance-Voltage Method -- 9.3.2 DC Method -- 9.4 Measurement of Threshold Voltage -- 9.5 Determination of Body Factor -- 9.6 Flat Band Voltage -- 9.7 Drain Induced Barrier Lowering (DIBL) Parameter -- 9.8 Determination of Subthreshold Slope -- 9.9 Carrier Inversion Layer Mobility Measurement -- 9.9.1 Split-CV Method -- 9.10 Determination of Effective Channel Length and Width -- 9.10.1 Drain Current Methods of Determination L -- 9.10.2 Capacitance Method of Determining L -- 9.10.3 Methods of Determining W -- 9.11 Determination of Drain Saturation Voltage.

9.12 Measurement of MOSFET Intrinsic Capacitances -- 9.12.1 On-Chip Methods -- 9.12.2 Off-Chip Methods -- 9.13 Measurement of Gate Overlap Capacitance -- 9.14 Measurement of MOSFET Source/Drain Diode Junction Parameters -- 9.14.1 Diode Saturation or Reverse Current I, -- 9.14.2 Junction Capacitance -- References -- 10 Model Parameter Extraction Using Optimization Method -- 10.1 Model Parameter Extraction -- 10.2 Basics Definitions in Optimization -- 10.3 Optimization Methods -- 10.3.1 Constrained Optimization -- 10.3.2 Multiple Response Optimization -- 10.4 Some Remarks on Parameter Extraction Using Optimization Technique -- 10.5 Confidence Limits on Estimated Model Parameter -- 10.5.1 Examples of Redundant Parameters -- 10.6 Parameter Extraction Using Optimizer -- 10.6.1 Drain Current Model Parameter Extraction -- 10.6.2 MOSFET AC Model Parameter Extraction -- References -- 11 SPICE Diode and MOSFET Models and Their Parameters -- 11.1 Diode Model -- 11.2 MOSFET Level 1 Model -- 11.2.1 DC Model -- 11.2.2 Capacitance Model -- 11.3 MOSFET Level 2 Model -- 11.3.1 DC Model -- 11.3.2 Capacitance Model -- 11.4 MOSFET Level 3 Model -- 11.4.1 DC Model -- 11.5 MOSFET Level 4 Model -- 11.5.1 DC Model -- 11.5.2 Capacitance Model -- 11.6 Comparison of the Four MOSFET Models -- References -- 12 Statistical Modeling and Worst-case Design Parameters -- 12.1 Methods of Generating Worst Case Parameters -- 12.2 Model Parameter Sensitivity -- 12.2.1 Principal Factor Method -- 12.3 Statistical Analysis with Parameter Correlation -- 12.3.1 Principal Component Analysis -- 12.4 Factor Analysis -- 12.4.1 Factor Rotation -- 12.4.2 Regression Models -- 12.5 Optimization Method -- References -- Appendix A. Important Properties of Silicon, Silicon Dioxide and Silicon Nitride at 300K -- Appendix B. Some Important Physical Constants at 300 K -- Appendix C. Unit Conversion Factors.

Appendix D. Magnitude Prefixes -- Appendix E. Methods of Calculating s from the Implicit Eq. (6.23) or (6.30) -- References -- Appendix F. Charge Based MOSFET Intrinsic Capacitances -- Appendix G. Linear Regression -- Reference -- Appendix H. Basic Statistical and Probability Theory -- References -- Appendix I. List of Widely Used Statistical Package Programs -- Reference -- Subject Index.
Abstract:
A reprint of the classic text, this book popularized compact modeling of electronic and semiconductor devices and components for college and graduate-school classrooms, and manufacturing engineering, over a decade ago. The first comprehensive book on MOS transistor compact modeling, it was the most cited among similar books in the area and remains the most frequently cited today. The coverage is device-physics based and continues to be relevant to the latest advances in MOS transistor modeling. This is also the only book that discusses in detail how to measure device model parameters required for circuit simulations. The book deals with the MOS Field Effect Transistor (MOSFET) models that are derived from basic semiconductor theory. Various models are developed, ranging from simple to more sophisticated models that take into account new physical effects observed in submicron transistors used in today's (1993) MOS VLSI technology. The assumptions used to arrive at the models are emphasized so that the accuracy of the models in describing the device characteristics are clearly understood. Due to the importance of designing reliable circuits, device reliability models are also covered. Understanding these models is essential when designing circuits for state-of-the-art MOS ICs.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: