Cover image for Diffraction-limited Imaging With Large And Moderate Telescopes.
Diffraction-limited Imaging With Large And Moderate Telescopes.
Title:
Diffraction-limited Imaging With Large And Moderate Telescopes.
Author:
Saha, Swapan K.
ISBN:
9789812708885
Personal Author:
Physical Description:
1 online resource (633 pages)
Contents:
Contents -- Preface -- Principal symbols -- List of acronyms -- 1. Introduction to electromagnetic theory -- 1.1 Introduction -- 1.2 Maxwell's equations -- 1.2.1 Charge continuity equation -- 1.2.2 Boundary conditions -- 1.3 Energy flux of electromagnetic field -- 1.4 Conservation law of the electromagnetic field -- 1.5 Electromagnetic wave equations -- 1.5.1 The Poynting vector and the Stokes parameter -- 1.5.2 Harmonic time dependence and the Fourier transform -- 2. Wave optics and polarization -- 2.1 Electromagnetic theory of propagation -- 2.1.1 Intensity of a light wave -- 2.1.2 Harmonic plane waves -- 2.1.3 Harmonic spherical waves -- 2.2 Complex representation of monochromatic light waves -- 2.2.1 Superposition of waves -- 2.2.2 Standing waves -- 2.2.3 Phase and group velocities -- 2.3 Complex representation of non-monochromatic fields -- 2.3.1 Convolution relationship -- 2.3.2 Case of quasi-monochromatic light -- 2.3.3 Successive wave-trains emitted by an atom -- 2.3.4 Coherence length and coherence time -- 2.4 Polarization of plane monochromatic waves -- 2.4.1 Stokes vector representation -- 2.4.2 Optical elements required for polarimetry -- 2.4.3 Degree of polarization -- 2.4.4 Transformation of Stokes parameters -- 2.4.4.1 Polarimeter -- 2.4.4.2 Imaging polarimeter -- 3. Interference and diffraction -- 3.1 Fundamentals of interference -- 3.2 Interference of two monochromatic waves -- 3.2.1 Young's double-slit experiment -- 3.2.2 Michelson's interferometer -- 3.2.3 Mach-Zehnder interferometer -- 3.3 Interference with quasi-monochromatic waves -- 3.4 Propagation of mutual coherence -- 3.4.1 Propagation laws for the mutual coherence -- 3.4.2 Wave equations for the mutual coherence -- 3.5 Degree of coherence from an extended incoherent source: partial coherence -- 3.5.1 The van Cittert-Zernike theorem -- 3.5.2 Coherence area.

3.6 Diffraction -- 3.6.1 Derivation of the diffracted field -- 3.6.2 Fresnel approximation -- 3.6.3 Fraunhofer approximation -- 3.6.3.1 Diffraction by a rectangular aperture -- 3.6.3.2 Diffraction by a circular pupil -- 4. Image formation -- 4.1 Image of a source -- 4.1.1 Coherent imaging -- 4.1.2 Incoherent imaging -- 4.1.3 Optical transfer function -- 4.1.4 Image in the presence of aberrations -- 4.2 Imaging with partially coherent beams -- 4.2.1 Effects of a transmitting object -- 4.2.2 Transmission of mutual intensity -- 4.2.3 Images of trans-illuminated objects -- 4.3 The optical telescope -- 4.3.1 Resolving power of a telescope -- 4.3.2 Telescope aberrations -- 5. Theory of atmospheric turbulence -- 5.1 Earth's atmosphere -- 5.2 Basic formulations of atmospheric turbulence -- 5.2.1 Turbulent flows -- 5.2.2 Inertial subrange -- 5.2.3 Structure functions of the velocity field -- 5.2.4 Kolmogorov spectrum of the velocity field -- 5.2.5 Statistics of temperature fluctuations -- 5.2.6 Refractive index fluctuations -- 5.2.7 Experimental validation of structure constants -- 5.3 Statistical properties of the propagated wave through turbulence -- 5.3.1 Contribution of a thin layer -- 5.3.2 Computation of phase structure function -- 5.3.3 Effect of Fresnel diffraction -- 5.3.4 Contribution of multiple turbulent layers -- 5.4 Imaging in randomly inhomogeneous media -- 5.4.1 Seeing-limited images -- 5.4.2 Atmospheric coherence length -- 5.4.3 Atmospheric coherence time -- 5.4.4 Aniso-planatism -- 5.5 Image motion -- 5.5.1 Variance due to angle of arrival -- 5.5.2 Scintillation -- 5.5.3 Temporal evolution of image motion -- 5.5.4 Image blurring -- 5.5.5 Measurement of r0 -- 5.5.6 Seeing at the telescope site -- 5.5.6.1 Wind shears -- 5.5.6.2 Dome seeing -- 5.5.6.3 Mirror seeing -- 6. Speckle imaging -- 6.1 Speckle phenomena.

6.1.1 Statistical properties of speckle pattern -- 6.1.2 Superposition of speckle patterns -- 6.1.3 Power-spectral density -- 6.2 Speckle pattern interferometry with rough surface -- 6.2.1 Principle of speckle correlation fringe formation -- 6.2.2 Speckle correlation fringes by addition -- 6.2.3 Speckle correlation fringes by subtraction -- 6.3 Stellar speckle interferometry -- 6.3.1 Outline of the theory of speckle interferometry -- 6.3.2 Benefit of short-exposure images -- 6.3.3 Data processing -- 6.3.4 Noise reduction using Wiener filter -- 6.3.5 Simulations to generate speckles -- 6.3.6 Speckle interferometer -- 6.3.7 Speckle spectroscopy -- 6.3.8 Speckle polarimetry -- 6.4 Pupil-plane interferometry -- 6.4.1 Estimation of object modulus -- 6.4.2 Shear interferometry -- 6.5 Aperture synthesis with single telescope -- 6.5.1 Phase-closure method -- 6.5.2 Aperture masking method -- 6.5.3 Non-redundant masking interferometer -- 7. Adaptive optics -- 7.1 Basic principles -- 7.1.1 Greenwood frequency -- 7.1.2 Thermal blooming -- 7.2 Wavefront analysis using Zernike polynomials -- 7.2.1 Definition of Zernike polynomial and its properties -- 7.2.2 Variance of wavefront distortions -- 7.2.3 Statistics of atmospheric Zernike coefficients -- 7.3 Elements of adaptive optics systems -- 7.3.1 Steering/tip-tilt mirrors -- 7.3.2 Deformable mirrors -- 7.3.2.1 Segmented mirrors -- 7.3.2.2 Ferroelectric actuators -- 7.3.2.3 Deformable mirrors with discrete actuators -- 7.3.2.4 Bimorph deformable mirror (BDM) -- 7.3.2.5 Membrane deformable mirrors -- 7.3.2.6 Liquid crystal DM -- 7.3.3 Deformable mirror driver electronics -- 7.3.4 Wavefront sensors -- 7.3.4.1 Shack Hartmann (SH) wavefront sensor -- 7.3.4.2 Curvature sensing -- 7.3.4.3 Pyramid WFS -- 7.3.5 Wavefront reconstruction -- 7.3.5.1 Zonal and modal approaches -- 7.3.5.2 Servo control.

7.3.6 Accuracy of the correction -- 7.3.7 Reference source -- 7.3.8 Adaptive secondary mirror -- 7.3.9 Multi-conjugate adaptive optics -- 8. High resolution detectors -- 8.1 Photo-electric effect -- 8.1.1 Detecting light -- 8.1.2 Photo-detector elements -- 8.1.3 Detection of photo-electrons -- 8.1.4 Photo-multiplier tube -- 8.1.5 Image intensifiers -- 8.2 Charge-coupled device (CCD) -- 8.2.1 Readout procedure -- 8.2.2 Characteristic features -- 8.2.2.1 Quantum efficiency -- 8.2.2.2 Charge Transfer efficiency -- 8.2.2.3 Gain -- 8.2.2.4 Dark current -- 8.2.3 Calibration of CCD -- 8.2.4 Intensified CCD -- 8.3 Photon-counting sensors -- 8.3.1 CCD-based photon-counting system -- 8.3.2 Digicon -- 8.3.3 Precision analog photon address (PAPA) camera -- 8.3.4 Position sensing detectors -- 8.3.5 Special anode cameras -- 8.4 Solid state technologies -- 8.4.1 Electron multiplying charge coupled device (EMCCD) -- 8.4.2 Superconducting tunnel junction -- 8.4.3 Avalanche photo-diodes -- 8.5 Infrared sensors -- 9. Image processing -- 9.1 Post-detection image reconstruction -- 9.1.1 Shift-and-add algorithm -- 9.1.2 Selective image reconstruction -- 9.1.3 Speckle holography -- 9.1.4 Cross-spectrum analysis -- 9.1.5 Differential speckle interferometry -- 9.1.6 Knox-Thomson technique (KT) -- 9.1.7 Triple-correlation technique -- 9.1.7.1 Deciphering phase from bispectrum -- 9.1.7.2 Relationship between KT and TC -- 9.2 Iterative deconvolution techniques -- 9.2.1 Fienup algorithm -- 9.2.2 Blind iterative deconvolution (BID) technique -- 9.2.3 Richardson-Lucy algorithm -- 9.2.4 Maximum entropy method (MEM) -- 9.2.5 Pixon -- 9.2.6 Miscellaneous iterative algorithms -- 9.3 Phase retrieval -- 9.3.1 Phase-unwrapping -- 9.3.2 Phase-diversity -- 10. Astronomy fundamentals -- 10.1 Black body radiation -- 10.1.1 Cavity radiation -- 10.1.2 Planck's law.

10.1.3 Application of blackbody radiation concepts to stellar emission -- 10.1.4 Radiation mechanism -- 10.1.4.1 Atomic transition -- 10.1.4.2 Hydrogen spectra -- 10.2 Astronomical measurements -- 10.2.1 Flux density and luminosity -- 10.2.2 Magnitude scale -- 10.2.2.1 Apparent magnitude -- 10.2.2.2 Absolute magnitude -- 10.2.2.3 Bolometric corrections -- 10.2.3 Distance scale -- 10.2.4 Extinction -- 10.2.4.1 Interstellar extinction -- 10.2.4.2 Color excess -- 10.2.4.3 Atmospheric extinction -- 10.2.4.4 Instrumental magnitudes -- 10.2.4.5 Color and magnitude transformation -- 10.2.4.6 UBV transformation equations -- 10.2.5 Stellar temperature -- 10.2.5.1 Effective temperature -- 10.2.5.2 Brightness temperature -- 10.2.5.3 Color temperature -- 10.2.5.4 Kinetic temperature -- 10.2.5.5 Excitation temperature -- 10.2.5.6 Ionization temperature -- 10.2.6 Stellar spectra -- 10.2.6.1 Hertzsprung-Russell (HR) diagram -- 10.2.6.2 Spectral classification -- 10.2.6.3 Utility of stellar spectrum -- 10.3 Binary stars -- 10.3.1 Masses of stars -- 10.3.2 Types of binary systems -- 10.3.2.1 Visual binaries -- 10.3.2.2 Spectroscopic binaries -- 10.3.2.3 Eclipsing binaries -- 10.3.2.4 Astrometric binaries -- 10.3.3 Binary star orbits -- 10.3.3.1 Apparent orbit -- 10.3.3.2 Orbit determination -- 10.4 Conventional instruments at telescopes -- 10.4.1 Imaging with CCD -- 10.4.2 Photometer -- 10.4.3 Spectrometer -- 10.5 Occultation technique -- 10.5.1 Methodology of occultation observation -- 10.5.2 Science with occultation technique -- 11. Astronomical applications -- 11.1 High resolution imaging of extended objects -- 11.1.1 The Sun -- 11.1.1.1 Solar structure -- 11.1.1.2 Transient phenomena -- 11.1.1.3 Solar interferometric observations -- 11.1.1.4 Solar speckle observation during eclipse -- 11.1.2 Jupiter -- 11.1.3 Asteroids -- 11.2 Stellar objects.

11.2.1 Measurement of stellar diameter.
Abstract:
This book deals with the fundamentals of wave optics, polarization, interference, diffraction, imaging, and the origin, properties, and optical effects of turbulence in the Earth's atmosphere. Techniques developed during the last few decades to overcome atmospheric image degradation (including passive methods, speckle interferometry in particular, and active methods such as adaptive optics), are highlighted. Also discussed are high resolution sensors, image processing, and the astronomical results obtained with these techniques.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: