
Introduction to Data Compression.
Title:
Introduction to Data Compression.
Author:
Sayood, Khalid.
ISBN:
9780080509259
Personal Author:
Edition:
3rd ed.
Physical Description:
1 online resource (703 pages)
Series:
The Morgan Kaufmann Series in Multimedia Information and Systems
Contents:
Front cover -- Title page -- Copyright page -- Table of contents -- Preface -- Audience -- Course Use -- Approach -- Learning from This Book -- Content and Organization -- A Personal View -- Acknowledgments -- 1 Introduction -- 1.1 Compression Techniques -- 1.1.1 Lossless Compression -- 1.1.2 Lossy Compression -- 1.1.3 Measures of Performance -- 1.2 Modeling and Coding -- 1.3 Summary -- 1.4 Projects and Problems -- 2 Mathematical Preliminaries for Lossless Compression -- 2.1 Overview -- 2.2 A Brief Introduction to Information Theory -- 2.2.1 Derivation of Average Information -- 2.3 Models -- 2.3.1 Physical Models -- 2.3.2 Probability Models -- 2.3.3 Markov Models -- 2.3.4 Composite Source Model -- 2.4 Coding -- 2.4.1 Uniquely Decodable Codes -- 2.4.2 Prefix Codes -- 2.4.3 The Kraft-McMillan Inequality -- 2.5 Algorithmic Information Theory -- 2.6 Minimum Description Length Principle -- 2.7 Summary -- 2.8 Projects and Problems -- 3 Huffman Coding -- 3.1 Overview -- 3.2 The Huffman Coding Algorithm -- 3.2.1 Minimum Variance Huffman Codes -- 3.2.2 Optimality of Huffman Codes -- 3.2.3 Length of Huffman Codes -- 3.2.4 Extended Huffman Codes -- 3.3 Nonbinary Huffman Codes -- 3.4 Adaptive Huffman Coding -- 3.4.1 Update Procedure -- 3.4.2 Encoding Procedure -- 3.4.3 Decoding Procedure -- 3.5 Golomb Codes -- 3.6 Rice Codes -- 3.6.1 CCSDS Recommendation for Lossless Compression -- 3.7 Tunstall Codes -- 3.8 Applications of Huffman Coding -- 3.8.1 Lossless Image Compression -- 3.8.2 Text Compression -- 3.8.3 Audio Compression -- 3.9 Summary -- 3.10 Projects and Problems -- 4 Arithmetic Coding -- 4.1 Overview -- 4.2 Introduction -- 4.3 Coding a Sequence -- 4.3.1 Generating a Tag -- 4.3.2 Deciphering the Tag -- 4.4 Generating a Binary Code -- 4.4.1 Uniqueness and Ef f iciency of the Arithmetic Code -- 4.4.2 Algorithm Implementation.
4.4.3 Integer Implementation -- 4.5 Comparison of Huffman and Arithmetic Coding -- 4.6 Adaptive Arithmetic Coding -- 4.7 Applications -- 4.8 Summary -- 4.9 Projects and Problems -- 5 Dictionary Techniques -- 5.1 Overview -- 5.2 Introduction -- 5.3 Static Dictionary -- 5.3.1 Digram Coding -- 5.4 Adaptive Dictionary -- 5.4.1 The LZ77 Approach -- 5.4.2 The LZ78 Approach -- 5.5 Applications -- 5.5.1 File Compression-UNIX -- 5.5.2 Image Compression-The Graphics Interchange Format (GIF) -- 5.5.3 Image Compression-Portable Network Graphics (PNG) -- 5.5.4 Compression over Modems-V.42 bis -- 5.6 Summary -- 5.7 Projects and Problems -- 6 Context-Based Compression -- 6.1 Overview -- 6.2 Introduction -- 6.3 Prediction with Partial Match (ppm) -- 6.3.1 The Basic Algorithm -- 6.3.2 The Escape Symbol -- 6.3.3 Length of Context -- 6.3.4 The Exclusion Principle -- 6.4 The Burrows-Wheeler Transform -- 6.4.1 Move-to-Front Coding -- 6.5 Associative Coder of Buyanovsky (ACB) -- 6.6 Dynamic Markov Compression -- 6.7 Summary -- 6.8 Projects and Problems -- 7 Lossless Image Compression -- 7.1 Overview -- 7.2 Introduction -- 7.2.1 The Old JPEG Standard -- 7.3 CALIC -- 7.4 JPEG-LS -- 7.5 Multiresolution Approaches -- 7.5.1 Progressive Image Transmission -- 7.6 Facsimile Encoding -- 7.6.1 Run-Length Coding -- 7.6.2 CCITT Group 3 and 4-Recommendations T.4 and T.6 -- 7.6.3 JBIG -- 7.6.4 JBIG2-T.88 -- 7.7 MRC-T.44 -- 7.8 Summary -- 7.9 Projects and Problems -- 8 Mathematical Preliminaries for Lossy Coding -- 8.1 Overview -- 8.2 Introduction -- 8.3 Distortion Criteria -- 8.3.1 The Human Visual System -- 8.3.2 Auditory Perception -- 8.4 Information Theory Revisited -- 8.4.1 Conditional Entropy -- 8.4.2 Average Mutual Information -- 8.4.3 Differential Entropy -- 8.5 Rate Distortion Theory -- 8.6 Models -- 8.6.1 Probability Models -- 8.6.2 Linear System Models.
8.6.3 Physical Models -- 8.7 Summary -- 8.8 Projects and Problems -- 9 Scalar Quantization -- 9.1 Overview -- 9.2 Introduction -- 9.3 The Quantization Problem -- 9.4 Uniform Quantizer -- 9.5 Adaptive Quantization -- 9.5.1 Forward Adaptive Quantization -- 9.5.2 Backward Adaptive Quantization -- 9.6 Nonuniform Quantization -- 9.6.1 pdf-Optimized Quantization -- 9.6.2 Companded Quantization -- 9.7 Entropy-Coded Quantization -- 9.7.1 Entropy Coding of Lloyd-Max Quantizer Outputs -- 9.7.2 Entropy-Constrained Quantization -- 9.7.3 High-Rate Optimum Quantization -- 9.8 Summary -- 9.9 Projects and Problems -- 10 Vector Quantization -- 10.1 Overview -- 10.2 Introduction -- 10.3 Advantages of Vector Quantization over Scalar Quantization -- 10.4 The Linde-Buzo-Gray Algorithm -- 10.4.1 Initializing the LBG Algorithm -- 10.4.2 The Empty Cell Problem -- 10.4.3 Use of LBG for Image Compression -- 10.5 Tree-Structured Vector Quantizers -- 10.5.1 Design of Tree-Structured Vector Quantizers -- 10.5.2 Pruned Tree-Structured Vector Quantizers -- 10.6 Structured Vector Quantizers -- 10.6.1 Pyramid Vector Quantization -- 10.6.2 Polar and Spherical Vector Quantizers -- 10.6.3 Lattice Vector Quantizers -- 10.7 Variations on the Theme -- 10.7.1 Gain-Shape Vector Quantization -- 10.7.2 Mean-Removed Vector Quantization -- 10.7.3 Classified Vector Quantization -- 10.7.4 Multistage Vector Quantization -- 10.7.5 Adaptive Vector Quantization -- 10.8 Trellis-Coded Quantization -- 10.9 Summary -- 10.10 Projects and Problems -- 11 Differential Encoding -- 11.1 Overview -- 11.2 Introduction -- 11.3 The Basic Algorithm -- 11.4 Prediction in DPCM -- 11.5 Adaptive DPCM -- 11.5.1 Adaptive Quantization in DPCM -- 11.5.2 Adaptive Prediction in DPCM -- 11.6 Delta Modulation -- 11.6.1 Constant Factor Adaptive Delta Modulation (CFDM) -- 11.6.2 Continuously Variable Slope Delta Modulation.
11.7 Speech Coding -- 11.7.1 G.726 -- 11.8 Image Coding -- 11.9 Summary -- 11.10 Projects and Problems -- 12 Mathematical Preliminaries for Transforms, Subbands, and Wavelets -- 12.1 Overview -- 12.2 Introduction -- 12.3 Vector Spaces -- 12.3.1 Dot or Inner Product -- 12.3.2 Vector Space -- 12.3.3 Subspace -- 12.3.4 Basis -- 12.3.5 Inner Product-Formal Definition -- 12.3.6 Orthogonal and Orthonormal Sets -- 12.4 Fourier Series -- 12.5 Fourier Transform -- 12.5.1 Parseval's Theorem -- 12.5.2 Modulation Property -- 12.5.3 Convolution Theorem -- 12.6 Linear Systems -- 12.6.1 Time Invariance -- 12.6.2 Transfer Function -- 12.6.3 Impulse Response -- 12.6.4 Filter -- 12.7 Sampling -- 12.7.1 Ideal Sampling-Frequency Domain View -- 12.7.2 Ideal Sampling-Time Domain View -- 12.8 Discrete Fourier Transform -- 12.9 Z-Transform -- 12.9.1 Tabular Method -- 12.9.2 Partial Fraction Expansion -- 12.9.3 Long Division -- 12.9.4 Z-Transform Properties -- 12.9.5 Discrete Convolution -- 12.10 Summary -- 12.11 Projects and Problems -- 13 Transform Coding -- 13.1 Overview -- 13.2 Introduction -- 13.3 The Transform -- 13.4 Transforms of Interest -- 13.4.1 Karhunen-Loéve Transform -- 13.4.2 Discrete Cosine Transform -- 13.4.3 Discrete Sine Transform -- 13.4.4 Discrete Walsh-Hadamard Transform -- 13.5 Quantization and Coding of Transform Coefficients -- 13.6 Application to Image Compression-JPEG -- 13.6.1 The Transform -- 13.6.2 Quantization -- 13.6.3 Coding -- 13.7 Application to Audio Compression-The MDCT -- 13.8 Summary -- 13.9 Projects and Problems -- 14 Subband Coding -- 14.1 Overview -- 14.2 Introduction -- 14.3 Filters -- 14.3.1 Some Filters Used in Subband Coding -- 14.4 The Basic Subband Coding Algorithm -- 14.4.1 Analysis -- 14.4.2 Quantization and Coding -- 14.4.3 Synthesis -- 14.5 Design of Filter Banks -- 14.5.1 Downsampling -- 14.5.2 Upsampling.
14.6 Perfect Reconstruction Using Two-Channel Filter Banks -- 14.6.1 Two-Channel PR Quadrature Mirror Filters -- 14.6.2 Power Symmetric FIR Filters -- 14.7 M-Band QMF Filter Banks -- 14.8 The Polyphase Decomposition -- 14.9 Bit Allocation -- 14.10 Application to Speech Coding-G.722 -- 14.11 Application to Audio Coding-MPEG Audio -- 14.12 Application to Image Compression -- 14.12.1 Decomposing an Image -- 14.12.2 Coding the Subbands -- 14.13 Summary -- 14.14 Projects and Problems -- 15 Wavelet-Based Compression -- 15.1 Overview -- 15.2 Introduction -- 15.3 Wavelets -- 15.4 Multiresolution Analysis and the Scaling Function -- 15.5 Implementation Using Filters -- 15.5.1 Scaling and Wavelet Coefficients -- 15.5.2 Families of Wavelets -- 15.6 Image Compression -- 15.7 Embedded Zerotree Coder -- 15.8 Set Partitioning in Hierarchical Trees -- 15.9 JPEG 2000 -- 15.10 Summary -- 15.11 Projects and Problems -- 16 Audio Coding -- 16.1 Overview -- 16.2 Introduction -- 16.2.1 Spectral Masking -- 16.2.2 Temporal Masking -- 16.2.3 Psychoacoustic Model -- 16.3 MPEG Audio Coding -- 16.3.1 Layer I Coding -- 16.3.2 Layer II Coding -- 16.3.3 Layer III Coding-mp3 -- 16.4 MPEG Advanced Audio Coding -- 16.4.1 MPEG-2 AAC -- 16.4.2 MPEG-4 AAC -- 16.5 Dolby AC3 (Dolby Digital) -- 16.5.1 Bit Allocation -- 16.6 Other Standards -- 16.7 Summary -- 17 Analysis/Synthesis and Analysis by Synthesis Schemes -- 17.1 Overview -- 17.2 Introduction -- 17.3 Speech Compression -- 17.3.1 The Channel Vocoder -- 17.3.2 The Linear Predictive Coder (Government Standard LPC-10) -- 17.3.3 Code Excited Linear Predicton (CELP) -- 17.3.4 Sinusoidal Coders -- 17.3.5 Mixed Excitation Linear Prediction (MELP) -- 17.4 Wideband Speech Compression-ITU-T G.722.2 -- 17.5 Image Compression -- 17.5.1 Fractal Compression -- 17.6 Summary -- 17.7 Projects and Problems -- 18 Video Compression -- 18.1 Overview.
18.2 Introduction.
Abstract:
Each edition of Introduction to Data Compression has widely been considered the best introduction and reference text on the art and science of data compression, and the third edition continues in this tradition. Data compression techniques and technology are ever-evolving with new applications in image, speech, text, audio, and video. The third edition includes all the cutting edge updates the reader will need during the work day and in class. Khalid Sayood provides an extensive introduction to the theory underlying today's compression techniques with detailed instruction for their applications using several examples to explain the concepts. Encompassing the entire field of data compression Introduction to Data Compression, includes lossless and lossy compression, Huffman coding, arithmetic coding, dictionary techniques, context based compression, scalar and vector quantization. Khalid Sayood provides a working knowledge of data compression, giving the reader the tools to develop a complete and concise compression package upon completion of his book. *New content added on the topic of audio compression including a description of the mp3 algorithm *New video coding standard and new facsimile standard explained *Completely explains established and emerging standards in depth including JPEG 2000, JPEG-LS, MPEG-2, Group 3 and 4 faxes, JBIG 2, ADPCM, LPC, CELP, and MELP *Source code provided via companion web site that gives readers the opportunity to build their own algorithms, choose and implement techniques in their own applications.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View