Cover image for Polymer Reaction Engineering.
Polymer Reaction Engineering.
Title:
Polymer Reaction Engineering.
Author:
Asua, Jose.
ISBN:
9780470691427
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (394 pages)
Contents:
Polymer Reaction Engineering -- Contents -- Contributors -- Preface -- Notation -- Acronyms -- 1 Introduction to Polymerization Processes -- 1.1 Microstructural features of polymers and their effect on properties -- 1.1.1 Chemical composition and monomer sequence distribution -- 1.1.2 Molecular weight distribution -- 1.1.3 Polymer architecture -- 1.1.4 Chain configuration -- 1.1.5 Morphology -- 1.1.6 Effect of processing and compounding on the microstructure of the polymeric materials -- 1.2 Classes of polymerizations -- 1.2.1 Chain-growth polymerization -- 1.2.2 Step-growth polymerization -- 1.3 Polymerization techniques -- 1.4 Main commercial polymers -- 1.4.1 Polyolefins -- 1.4.2 Styrenic polymers -- 1.4.3 Poly(vinyl chloride) -- 1.4.4 Waterborne dispersed polymers -- 1.4.5 Polyesters and polyamides -- 1.4.6 Thermosets -- 1.5 Polymerization reactors -- References -- 2 Coordination Polymerization -- 2.1 Polyolefin types: microstructural classification and analytical techniques -- 2.1.1 Polyethylene types -- 2.1.2 Polypropylene types -- 2.1.3 Polyolefin microstructural characterization techniques -- 2.2 Catalysts for olefin polymerization -- 2.2.1 Coordination catalyst types -- 2.2.2 Polymerization mechanism -- 2.3 Polymerization kinetics for single- and multiple-site catalysts -- 2.3.1 Homopolymerization -- 2.3.2 Copolymerization -- 2.3.3 Long-chain branch formation -- 2.4 Inter- and intraparticle mass and heat transfer resistances -- 2.4.1 Particle fragmentation and morphology control -- 2.4.2 Single particle models: inter- and intraparticle mass and heat transfer -- 2.5 Industrial olefin polymerization reactors -- 2.5.1 Reactor configurations and designs -- 2.5.2 Polyethylene manufacturing processes -- 2.5.3 Polypropylene manufacturing processes -- 2.5.4Mathematical models for industrial reactors -- Acknowledgments -- References.

3 Free-Radical Polymerization: Homogeneous Systems -- 3.1 Free-radical polymers: properties and applications -- 3.2 FRP mechanisms and kinetics -- 3.2.1 Homopolymerization -- 3.2.2 Copolymerization -- 3.2.3 Diffusion-controlled reactions -- 3.2.4 Kinetic balances for modeling polymer MWs -- 3.3 Controlled radical polymerization -- 3.3.1 Stable free-radical polymerization -- 3.3.2 Atom transfer radical polymerization -- 3.3.3 Reverse addition-fragmentation chain transfer polymerization -- 3.4 Polymer reaction engineering aspects -- 3.4.1 Heat removal and temperature programming -- 3.4.2 Batch reactors -- 3.4.3 Semibatch (semicontinuous) reactors -- 3.4.4 Continuous stirred-tank reactors -- 3.4.5 Tubular reactors -- 3.5 A "roadmap" for mathematical modeling -- References -- 4 Free-Radical Polymerization: Heterogeneous Systems -- 4.1 Introduction -- 4.2 High-impact polystyrene -- 4.2.1 Interrelationship between microstructure and application properties -- 4.2.2 Modeling HIPS polymerization -- 4.2.3 Optimizing final properties: melt flow index in a continuous HIPS process -- 4.2.4 Final remarks for HIPS -- 4.3 Vinyl chloride monomer bulk polymerization -- 4.3.1 Kinetic mechanism -- 4.3.2 PVC morphology -- Acknowledgments -- References -- 5 Suspension Polymerization -- 5.1 Introduction -- 5.2 Surface active agents -- 5.3 Mixing phenomena -- 5.4T he "bead" suspension polymerization process -- 5.5 The "powder" suspension polymerization process -- 5.6 Population balance modeling -- 5.6.1 The drop breakage process -- 5.6.2 The drop coalescence process -- 5.6.3 Numerical solution of the PBE -- 5.7 Physical properties and phase equilibrium calculations -- 5.7.1 Physical and transport properties -- 5.7.2 Phase equilibrium calculations -- 5.8 Effect of operating conditions on PSD -- 5.9 Scale-up of suspension polymerization reactors -- References.

6 Emulsion Polymerization -- 6.1 Main products and markets -- 6.2 Microstructural features and their effect on properties -- 6.3 Emulsion polymerization fundamentals -- 6.3.1 Description of the process -- 6.3.2 Mechanisms, thermodynamics and kinetics -- 6.4 Reactor engineering -- 6.4.1 Emulsion polymerization reactors -- 6.4.2 Predicting the performance of emulsion polymerization reactors -- 6.4.3 Implementation of emulsion polymerization -- 6.4.4 Residual monomer and VOC removal -- 6.4.5 Scale-up -- 6.5 Related processes -- 6.5.1 Inverse emulsion polymerization -- 6.5.2 Miniemulsion polymerization -- 6.5.3 Microemulsion polymerization -- 6.5.4 Dispersion polymerization -- References -- 7 Step-Growth Polymerization -- 7.1 Introduction -- 7.1.1 Examples of commercially important polymers produced by step-growth polymerization -- 7.1.2 Basic properties of step-growth polymerization processes -- 7.2 Polymerization kinetics and modeling -- 7.2.1 Reaction kinetics and the most probable distribution -- 7.2.2 Effect of non-stoichiometric composition -- 7.2.3Molecular weight development in non-linear step-growth polymerization -- 7.3 Industrial step-growth products, processes and modeling -- 7.3.1 Poly(ethylene terephthalate) production and modeling -- 7.3.2 Polyamide production processes and modeling -- 7.4 Summary -- References -- 8 Control of Polymerization Reactors -- 8.1 Characterization of the control problem -- 8.2 Classical polymerization reaction control problems -- 8.2.1 Control of reaction rates and of reactor temperature -- 8.2.2 Control of monomer conversion and polymer production -- 8.2.3 Control of molecular weight averages and MWDs -- 8.2.4 Control of copolymer composition -- 8.2.5 Control of particle size and PSDs -- 8.2.6 Control of other reaction parameters -- 8.3 On-line monitoring -- 8.3.1 Introduction.

8.3.2 On-line sensors for monitoring polymer quality -- 8.3.3 State estimation -- 8.4 Safety -- 8.4.1 Introduction -- 8.4.2 Risk parameter assessment -- 8.5 Optimum operation design and setpoint specification -- 8.5.1 Problem definition and goals -- 8.5.2 Numerical solution of the optimization problem -- 8.5.3 Use of experimental design techniques for optimization -- 8.5.4 Heuristic methods -- 8.6 Calculation of the control action and control schemes -- 8.6.1 Open-loop control -- 8.6.2 Closed-loop control -- 8.6.3 Data handling -- 8.7 Concluding remarks -- References -- Index.
Abstract:
Professor José M. Asua is Professor of Chemical Engineering and Director of the Institute for Polymer Materials (POLYMAT), University of the Basque Country, Donostia-San Sebastián, Spain. Contributors to the book: Professor María J. Barandiaran Dr C. P. Cheng Professor Kyu Yong Choi Professor José C. De la Cal Professor Robin A. Hutchinson Professor Costas Kiparissides Dr Costas Kotoulas Professor José R. Leiza Professor Kimberly B. McAuley Professor Timothy McKenna Professor Gregorio R. Meira Professor Alexander Penlidis Professor José C. Pinto Professor João B.P. Soares.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: