
The Martian Surface : Composition, Mineralogy and Physical Properties.
Title:
The Martian Surface : Composition, Mineralogy and Physical Properties.
Author:
Bell, Jim.
ISBN:
9780511412806
Personal Author:
Physical Description:
1 online resource (688 pages)
Series:
Cambridge Planetary Science ; v.9
Cambridge Planetary Science
Contents:
Cover -- Half-title -- Series-title -- Title -- Copyright -- Dedication -- Contents -- List of Contributors -- Foreword -- Acknowledgments -- Part I: Introduction and Historical Perspective -- 1 Exploration of the Martian surface: 1992-2007 -- Abstract -- 1.1 Mars Exploration Program, the new era: 1992-2007 -- 1.2 Scientific rationale and goals for Marsexplorationfollow the water -- 1.3 Scope, organization, audience, and goals of the book -- 1.4 Introducing Mars' global geological evolution -- 1.5 Our current understanding of the Martian surface -- 1.5.1 Fundamentally a basaltic planet -- 1.5.2 Mars' altered surface, dominated by acid-sulfate processes -- 1.5.3 Martian evolutionaccretion through Hesperian -- 1.5.4 The Amazonian and active processes today -- 1.6 Outstanding questions and future challenges -- 1.6.1 Character of the Martian crust -- 1.6.2 Early aqueous chemistry -- 1.6.3 Survival of primitive basaltic minerals -- 1.6.4 Martian meteorite enigmas -- 1.6.5 Polar phenomena and climate change -- 1.6.6 The search for life goes on -- References -- 2 Historical context: the pre-MGS view of Mars' surface composition -- Abstract -- 2.1 Introduction -- 2.2 Typical spectral profiles -- 2.3 Mafic mineralogy -- 2.4 Iron oxides and hydroxides -- 2.4.1 Aqueous alteration minerals -- 2.4.2 Polar volatiles -- 2.5 Summarypoised for a new era -- Acknowledgments -- References -- Part II: Elemental Composition: Orbital And In Situ Surface Measurements -- Part II.A Results and Interpretations from New in situ APXS Measurements -- 3 Martian surface chemistry: APXS results from the Pathfinder landing site -- Abstract -- 3.1 Introduction -- 3.1.1 Landing site description -- 3.1.2 Instrument description -- 3.2 APXS calibration -- 3.2.1 The X-ray mode -- 3.2.2 The alpha-proton mode -- 3.2.3 Application of calibration to Pathfinder data -- 3.3 Chemical results.
3.4 Petrology of the Pathfinder soils and rocks -- 3.4.1 Soils -- 3.4.2 Rocks -- 3.5 Comparisons with other Martian materials -- 3.5.1 Pathfinder versus Viking and MER analyses -- 3.5.2 Pathfinder rocks versus TES surface types and SNCs -- 3.6 Conclusions -- References -- 4 Mars Exploration Rovers: chemical composition by the APXS -- Abstract -- 4.1 Introduction -- 4.2 The MER Alpha Particle X-ray Spectrometers -- 4.2.1 Fundamental principles -- Primary radiation spectrum of the source -- Penetration depth of radiation within sample -- Excitation cross sections -- Escape of X-rays -- 4.2.2 X-ray spectra -- 4.2.3 Peak fit analysis -- 4.2.4 Concentration evaluation -- 4.2.5 Matrix effects -- 4.2.6 Operations -- 4.2.7 Samples -- 4.3 Chemistry of Gusev Crater -- 4.3.1 Gusev plains -- Gusev plains soils -- Gusev plains trenches -- Gusev plains rocks -- 4.3.2 Gusev Columbia Hills -- Hills soils -- Columbia Hills rocks -- 4.4 Chemistry of Meridiani Planum -- 4.4.1 Meridiani soils -- 4.4.2 Meridiani rocks -- 4.4.3 Meridiani spherules -- 4.4.4 Unusual Meridiani rocks -- Bounce Rock -- Heatshield Rock -- Cobbles and fragments -- 4.5 Chemical composition of the crust and mantle -- 4.6 Conclusions -- Acknowledgment -- References -- Part II.B Results and Interpretations from New Orbital Elemental Measurements -- 5 Elemental abundances determined via the Mars Odyssey GRS -- Abstract -- 5.1 Introduction -- 5.2 Data acquisition, processing, and analysis -- 5.2.1 Data acquisition -- 5.2.2 Data processing -- 5.2.3 Data analysis and mapping -- 5.3 Results -- 5.3.1 Iron -- 5.3.2 Silicon -- 5.3.3 Chlorine -- 5.3.4 Hydrogen/H2O in equatorial regions -- 5.3.5 Hydrogen in high latitudes (>60º) -- 5.3.6 Potassium and Thorium -- 5.3.7 Element correlations -- 5.4 Discussion -- 5.4.1 Surface Types 1 and 2 -- Alteration by water -- Igneous processes.
5.4.2 Possible causes of Cl variability -- 5.4.3 Martian bulk composition -- 5.4.4 H2O in polar regions -- 5.4.5 Thicknesses of seasonal carbon dioxide polar caps -- 5.4.6 Argon over the Martian polar regions -- 5.5 Summary and conclusions -- References -- 6 Volatiles on Mars: scientific results from the Mars Odyssey Neutron Spectrometer -- abstract -- 6.1 Introduction -- 6.2 The MONS experiment -- 6.3 Information content of neutron data packets -- 6.4 Scientific results of studies to date -- 6.4.1 The global distribution of WEH -- 6.4.2 The present distribution of water ice and/or hydrous minerals near the equator -- 6.4.3 Correlations between the WEH distribution and the geomorphology of surface materials -- 6.4.4 Recharge/discharge mechanisms and their time scales -- 6.4.5 The inventory of surface CO2 ice near the South Pole -- 6.5 Summary and conclusions -- Appendix A: Comparison between MONS and HEND results -- Acknowledgments -- References -- Part III: Mineralogy and Remote Sensing of Rocks, Soil, Dust, and Ices -- Part III.A Visible to Near-IR Telescopic and Orbital Measurements -- 7 Mineralogy of the Martian surface from Mars Express OMEGA observations -- Abstract -- 7.1 The OMEGA instrument on board the Mars Express mission -- 7.2 Identification of surface constituents -- 7.3 ISM/Phobos: pioneering results -- 7.4 OMEGA observations of frosts and ices -- 7.5 OMEGA observations of mafic minerals -- 7.6 OMEGA observations of ferric oxides -- 7.7 OMEGA detections of hydrated minerals -- 7.7.1 Hydrated sulfates -- 7.7.2 Hydrated phyllosilicates -- 7.7.3 Hydrated carbonates and other CO2 sinks -- 7.8 A derived Mars mineralogical history -- 7.9 Summary -- References -- 8 Visible to near-IR multispectral orbital observations of Mars -- Abstract -- 8.1 Introduction -- 8.1.1 HST multispectral and hyperspectral imaging.
Instrumentation and observations -- HST resultssurface composition -- HST resultsalbedo and photometry -- SummaryHST -- 8.1.2 Mars Global Surveyor Mars Orbiter Camera Wide Angle (MOC/WA) multispectral imaging -- 8.1.3 Mars Odyssey THEMIS-VIS multispectral imaging -- THEMIS-VIS survey of visible-wavelength spectral variability at sub-100thinspm/pixel scales -- Spectral characteristics of olivine-enriched terrains on Mars from THEMIS-VIS -- Fine-scale alteration minerals in layered deposits in Valles Marineris -- 8.1.4 Mars Express High Resolution Stereo Camera (HRSC) multispectral imaging -- 8.1.5 Mars Express OMEGA hyperspectral imaging and coordinated surface-orbital observations -- Coordinated MER-OMEGA observations in Meridiani Planum -- Coordinated MER-OMEGA observations in Gusev crater -- 8.1.6 Initial Mars Reconnaissance Orbiter multispectral imaging -- Initial High Resolution Imaging Science Experiment (HiRISE) color imaging -- Initial Mars Color Imager (MARCI) observations -- 8.1.7 Synthesis and implications -- 8.2 Summary -- References -- Part III.B Mid-IR and Magnetic Orbital Measurements -- 9 Global mineralogy mapped from the Mars Global Surveyor Thermal Emission Spectrometer -- Abstract -- 9.1 Introduction -- 9.2 Background -- 9.2.1 Vibrational spectroscopy -- 9.2.2 The TES instrument -- 9.2.3 Surface-atmosphere separation -- 9.3 Global mineral mappingMars is a volcanic planet -- 9.3.1 Basalt -- 9.3.2 Global mineral mapping -- 9.3.3 TES Types 1 and 2 -- 9.3.4 Regional volcanic variability -- 9.3.5 The degree of global surface alteration -- 9.3.6 Local compositional extremes -- 9.4 The origin of volcanic diversity -- 9.5 Carbonates -- 9.5.1 Detection of carbonates -- 9.5.2 Carbonate formation -- 9.6 A queous rocks and processes -- 9.6.1 Hematite -- Distribution, composition, and origin -- Water at Meridiani Planum.
9.6.2 Phyllosilicates and other alteration products -- 9.6.3 Sulfates -- 9.7 Relationship to Martian meteorites -- 9.8 History of water -- 9.8.1 Evidence for a primarily cold, dry Mars -- 9.8.2 A locally wet Mars -- 9.8.3 Modern snow and ice -- 9.9 Summary -- References -- 10 The compositional diversity and physical properties mapped from the Mars Odyssey Thermal Emission Imaging System -- Abstract -- 10.1 Introduction -- 10.1.1 Major science questions -- 10.1.2 Instrument and mission overview -- 10.2 Volcanic diversity at geologic scales -- 10.2.1 Olivine-rich basalt -- 10.2.2 Magma evolution in the Nili Patera Volcano -- 10.2.3 Granitoid units -- 10.2.4 Spectrally distinct units -- Example 1 -- Example 2 -- 10.2.5 What THEMIS has not found -- 10.2.6 Implications for crustal formation and evolution -- 10.3 Geology historya case study in Meridiani Planum -- 10.4 Temperature anomalies -- 10.5 Physical properties and processes -- 10.5.1 THEMIS thermal inertia -- 10.5.2 Surface materials -- Bedrock occurrences -- Layered units -- Talus and landslide materials -- Aeolian materials -- crater materials -- 10.6 Summaryinsights into Martian geologic processes -- References -- 11 Mars' crustal magnetization: a window into the past -- Abstract -- 11.1Introduction -- 11.1.1 Spacecraft measurements -- 11.1.2 Instrumentation -- 11.2 Magnetic field maps and models -- 11.3 Summary of principal MGS results -- 11.4 Magnetic mineralogy and SNC meteorites -- 11.4.1 Rock-forming minerals -- 11.4.2 Magnetizing mechanisms -- 11.4.3 Rocks with maximum magnetization -- 11.5 The magnetism of SNC meteorites -- 11.6 Stress and tectonicsplate tectonics at Mars? -- 11.7 Impact cratering and demagnetization -- 11.7.1 Impact model -- 11.7.2 Experiments -- 11.8 Summary -- References -- Part III.C Observations from Surface Landers/Rovers.
12 Multispectral imaging from Mars Pathfinder.
Abstract:
A fresh look at the latest Mars discoveries for researchers and students in planetary science, astronomy, and space exploration.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Genre:
Electronic Access:
Click to View