
The Maritime Engineering Reference Book : A Guide to Ship Design, Construction and Operation.
Title:
The Maritime Engineering Reference Book : A Guide to Ship Design, Construction and Operation.
Author:
Molland, Anthony F.
ISBN:
9780080560090
Personal Author:
Physical Description:
1 online resource (921 pages)
Contents:
Front cover -- The maritime engineering reference book -- Copyright page -- Contents -- Preface -- Chapter 1 The marine environment -- 1.1 The ship in the marine environment -- 1.2 Wind -- 1.3 Variations in level of sea surface -- 1.4 Regular waves -- 1.4.1 The trochoid -- 1.4.2 Higher order waves. Stokes and Airy Theory -- 1.5 The sinusoidal wave -- 1.5.1 Basic relationships to describe regular waves in deep water -- 1.5.2 Normal dispersion of a wave field -- 1.5.3 Orbital motion of water particles in a wave -- 1.6 Irregular waves -- 1.7 Spectrum formulae by Pierson/Moskowitz and Bretschneider -- 1.8 The JONSWAP sea spectrum -- 1.9 Maximum wave height in a stationary random sea -- 1.10 Long-term statistics of irregular seaway -- 1.11 Wave data from observations -- 1.12 Wave climate -- 1.13 Freak waves -- 1.14 Oceanography -- 1.14.1 Distribution of water on earth -- 1.14.2 Properties of water -- 1.14.2.1 Chlorophyll -- 1.14.2.2 Circulation -- 1.14.2.3 Compressibility -- 1.14.2.4 Conductivity -- 1.14.2.5 Density -- 1.14.2.6 Depth -- 1.14.2.7 Dissolved gases -- 1.14.2.8 Fresh water -- 1.14.2.9 Ionic concentration -- 1.14.2.10 Light and other electro-magnetic transmissions through water -- 1.14.2.11 Pressure -- 1.14.2.12 Salt water and salinity -- 1.14.2.13 Solar radiation -- 1.14.2.14 Sonic velocity and sound channels -- 1.14.2.15 Turbidity -- 1.14.2.16 Viscosity -- 1.14.2.17 Water quality -- 1.14.2.18 Water temperature -- 1.14.3 Coastal zone classifications and bottom types -- 1.15 Ambient air -- 1.16 Climatic extremes -- 1.17 Marine pollution -- References -- Chapter 2 Marine vehicle types -- 2.1 Overview -- 2.2 Merchant ships -- 2.2.1 General cargo ships -- 2.2.2 Container ships -- 2.2.3 Roll-on roll-off ships (Ro-Ro ships) -- 2.2.4 Car carriers -- 2.2.5 Bulk cargo carriers -- 2.2.5.1 Tankers -- 2.2.5.2 Dry bulk carriers -- 2.2.6 Passenger ships.
2.2.7 Tugs -- 2.2.8 Icebreakers and ice strengthened ships -- 2.2.9 Fishing vessels -- 2.3 High speed craft -- 2.3.1 Monohulls -- 2.3.2 Surface effect ships (SESs) -- 2.3.3 Hydrofoil craft -- 2.3.4 Multi-hulled vessels -- 2.3.5 Rigid inflatable boats (RIBs) -- 2.3.6 Comparison of high speed types -- 2.4 Yachts -- 2.5 Warships -- 2.5.1 Stealth -- 2.5.2 Sensors -- 2.5.3 Own ship weapons -- 2.5.4 Enemy weapons -- 2.5.5 Sustaining damage -- 2.5.6 Vulnerability studies -- 2.5.7 Types of warship -- 2.5.7.1 Frigates and destroyers -- 2.5.7.2 Mine countermeasures vessels -- 2.5.7.3 Submarines -- References -- Chapter 3 Flotation and stability -- 3.1 Equilibrium -- 3.1.1 Equilibrium of a body floating in still water -- 3.1.2 Underwater volume -- 3.2 Stability at small angles -- 3.2.1 Concept -- 3.2.2 Transverse metacentre -- 3.2.3 Transverse metacentre for simple geometrical forms -- 3.2.4 Metacentric diagrams -- 3.2.5 Longitudinal stability -- 3.3 Hydrostatic curves -- 3.3.1 Surface ships -- 3.3.2 Fully submerged bodies -- 3.4 Problems in trim and stability -- 3.4.1 Determination of displacement from observed draughts -- 3.4.2 Longitudinal position of the centre of gravity -- 3.4.3 Direct determination of displacement and position of G -- 3.4.4 Heel due to moving weight -- 3.4.5 Wall-sided ship -- 3.4.6 Suspended weights -- 3.5 Free surfaces -- 3.5.1 Effect of liquid free surfaces -- 3.6 The inclining experiment -- 3.7 Stability at large angles -- 3.7.1 Atwood's formula -- 3.7.2 Curves of statical stability -- 3.7.3 Metacentric height in the lolled condition -- 3.7.4 Cross curves of stability -- 3.7.5 Curves of statical stability from cross curves -- 3.7.6 Features of the statical stability curve -- 3.8 Weight movements -- 3.8.1 Transverse movement of weight -- 3.9 Dynamical stability -- 3.10 Flooding and damaged stability -- 3.10.1 Background.
3.10.2 Sinkage and trim when a compartment is open to the sea -- 3.10.3 Stability in the damaged condition -- 3.10.4 Asymmetrical flooding -- 3.10.5 Floodable length -- 3.11 Intact stability regulations -- 3.11.1 Introduction -- 3.11.2 The IMO code on intact stability -- 3.11.2.1 Passenger and cargo ships -- 3.11.2.2 Cargo ships carrying timber deck cargoes -- 3.11.2.3 Fishing vessels -- 3.11.2.4 Mobile offshore drilling units -- 3.11.2.5 Dynamically supported craft -- 3.11.2.6 Container ships greater than 100 m -- 3.11.2.7 Icing -- 3.11.2.8 Inclining and rolling tests -- 3.11.2.9 High-speed craft -- 3.11.3 Regulations of the US Navy -- 3.11.4 Regulations of the UK Navy -- 3.11.5 A criterion for sail vessels -- 3.11.6 A Code of practice for small workboats and pilot boats -- 3.11.7 Regulations for internal water vessels -- 3.11.7.1 EC regulations -- 3.11.7.2 Swiss regulations -- 3.11.8 Summary of intact stability regulations -- 3.12 Damage stability regulations -- 3.12.1 SOLAS -- 3.12.2 Probabilistic regulations -- 3.12.3 The US Navy -- 3.12.4 The UK Navy -- 3.12.5 The German Navy -- 3.12.6 A code for large commercial sailing or motor vessels -- 3.12.7 A code for small workboats and pilot boats -- 3.12.8 EC regulations for internal water vessels -- References -- Chapter 4 Ship structures -- 4.1 Main hull strength -- 4.1.1 Introduction -- 4.1.2 The standard calculation -- 4.1.2.1 The wave -- 4.1.2.2 Weight distribution -- 4.1.2.3 Buoyancy and balance -- 4.1.2.4 Loading, shearing force and bending moment -- 4.1.2.5 Second moment of area -- 4.1.2.6 Bending stresses -- 4.1.2.7 Shear stresses -- 4.1.2.8 Influence lines -- 4.1.2.9 Changes to section modulus -- 4.1.2.10 Slopes and deflections -- 4.1.2.11 Horizontal flexure -- 4.1.2.12 Behaviour of a hollow box girder -- 4.1.2.13 Wave pressure correction -- 4.1.2.14 Longitudinal strength standards by rule.
4.1.2.15 Full scale trials -- 4.1.2.16 The nature of failure -- 4.1.2.17 Realistic assessment of longitudinal strength -- 4.1.2.18 Realistic assessment of loading longitudinally -- 4.1.2.19 Realistic structural response -- 4.1.2.20 Assessment of structural safety -- 4.1.2.21 Hydroelastic analysis -- 4.1.2.22 Slamming -- 4.1.3 Material considerations -- 4.1.3.1 Geometrical discontinuities -- 4.1.3.2 Built-in stress concentrations -- 4.1.3.3 Crack extension, brittle fracture -- 4.1.3.4 Fatigue -- 4.1.3.5 Discontinuities in structural design -- 4.1.3.6 Superstructures and deckhouses -- 4.2 Structural design and analysis -- 4.2.1 Introduction -- 4.2.1.1 Overview -- 4.2.1.2 Loading and failure -- 4.2.1.3 Structural units of a ship -- 4.2.2 Stiffened plating -- 4.2.2.1 Simple beams -- 4.2.2.2 Grillages -- 4.2.2.3 Swedged plating -- 4.2.2.4 Comprehensive treatment of stiffened plating -- 4.2.3 Panels of plating -- 4.2.3.1 Behaviour of panels under lateral loading -- 4.2.3.2 Available results for flat plates under lateral pressure -- 4.2.3.3 Buckling of panels -- 4.2.4 Frameworks -- 4.2.4.1 Overview -- 4.2.4.2 Methods of analysis -- 4.2.4.3 Elastic stability of a frame -- 4.2.4.4 End constraint -- 4.2.5 Finite element analysis (FEA) -- 4.2.6 Realistic assessment of structural elements -- 4.2.7 Composite materials -- 4.3 Ship vibration -- 4.3.1 Overview -- 4.3.2 Flexural vibrations -- 4.3.3 Torsional vibrations -- 4.3.4 Coupling -- 4.3.5 Formulae for ship vibration -- 4.3.6 Direct calculation of vibration -- 4.3.7 Approximate formulae -- 4.3.8 Amplitudes of vibration -- 4.3.9 Checking vibration levels -- 4.3.10 Reducing vibration -- 4.3.11 Propeller-induced forces -- 4.3.12 Vibration testing of equipment -- References -- Chapter 5 Powering -- 5.1 Resistance and propulsion -- 5.1.1 Froude's analysis procedure -- 5.1.2 Components of calm water resistance.
5.1.2.1 Wave making resistance R[sub(W)] -- 5.1.2.2 The contribution of the bulbous bow -- 5.1.2.3 Transom immersion resistance -- 5.1.2.4 Viscous form resistance -- 5.1.2.5 Naked hull skin friction resistance -- 5.1.2.6 Appendage skin friction -- 5.1.2.7 Viscous resistance -- 5.1.3 Methods of resistance evaluation -- 5.1.3.1 Traditional and standard series analysis methods -- 5.1.3.2 Regression-based methods -- 5.1.3.3 Direct model tests -- 5.1.3.4 Computational fluid dynamics -- 5.1.4 Propulsive coefficients -- 5.1.4.1 Relative rotative efficiency -- 5.1.4.2 Thrust deduction factor -- 5.1.4.3 Hull efficiency -- 5.1.4.4 Quasi-propulsive coefficient -- 5.1.5 Influence of rough water -- 5.1.6 Restricted water effects -- 5.1.7 High-speed hull form resistance -- 5.1.7.1 Standard series data -- 5.1.7.2 Model test data -- 5.1.7.3 Summary of problems for fast and unconventional ships -- 5.1.8 Air resistance -- 5.2 Wake -- 5.2.1 General wake field characteristics -- 5.2.2 Wake field definition -- 5.2.3 The nominal wake field -- 5.2.4 Estimation of wake field parameters -- 5.2.5 Effective wake field -- 5.2.6 Wake field scaling -- 5.3 Propeller performance characteristics -- 5.3.1 General open water characteristics -- 5.3.2 Effect of cavitation on open water characteristics -- 5.3.3 Propeller scale effects -- 5.3.4 Specific propeller open water characteristics -- 5.3.4.1 Fixed pitch propellers -- 5.3.4.2 Controllable pitch propellers -- 5.3.4.3 Ducted propellers -- 5.3.4.4 High-speed propellers -- 5.3.5 Standard series data -- 5.4 Propeller theories -- 5.4.1 Early theories -- 5.4.2 Lifting surface models -- 5.4.3 Lifting-line-lifting-surface hybrid models -- 5.4.4 Vortex lattice methods -- 5.4.5 Boundary element methods -- 5.4.6 Methods for specialist propulsors -- 5.4.7 Computational fluid dynamics methods -- 5.5 Cavitation.
5.5.1 The basic physics of cavitation.
Abstract:
The Maritime Engineering Reference Book is a one-stop source for engineers involved in marine engineering and naval architecture. In this essential reference, Anthony F. Molland has brought together the work of a number of the world's leading writers in the field to create an inclusive volume for a wide audience of marine engineers, naval architects and those involved in marine operations, insurance and other related fields. Coverage ranges from the basics to more advanced topics in ship design, construction and operation. All the key areas are covered, including ship flotation and stability, ship structures, propulsion, seakeeping and maneuvering. The marine environment and maritime safety are explored as well as new technologies, such as computer aided ship design and remotely operated vehicles (ROVs). Facts, figures and data from world-leading experts makes this an invaluable ready-reference for those involved in the field of maritime engineering. Professor A.F. Molland, BSc, MSc, PhD, CEng, FRINA. is Emeritus Professor of Ship Design at the University of Southampton, UK. He has lectured ship design and operation for many years. He has carried out extensive research and published widely on ship design and various aspects of ship hydrodynamics. * A comprehensive overview from best-selling authors including Bryan Barrass, Rawson and Tupper, and David Eyres * Covers basic and advanced material on marine engineering and Naval Architecture topics * Have key facts, figures and data to hand in one complete reference book.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View