
Ground Penetrating Radar Theory and Applications.
Title:
Ground Penetrating Radar Theory and Applications.
Author:
Jol, Harry M.
ISBN:
9780080951843
Personal Author:
Physical Description:
1 online resource (545 pages)
Contents:
Front Cover -- Ground Penetrating Radar: Theory and Applications -- Copyright Page -- Table of Contents -- Preface -- Contributors -- Part I Ground Penetrating Radar (GPR) Principles -- Chapter 1 Electromagnetic Principles of Ground Penetrating Radar -- 1.1 Introduction -- 1.2 Ground Penetrating Radar Basic Principles -- 1.2.1 Overview -- 1.2.2 Maxwell's equations -- 1.2.3 Constitutive equations -- 1.2.4 Material properties -- 1.3 Wave Nature of Electromagnetic Fields -- 1.3.1 Wave properties -- 1.3.2 Ground penetrating radar source near an interface -- 1.3.3 Reflection, refraction, and transmission at interfaces -- 1.3.4 Resolution and zone of influence -- 1.3.5 Scattering attenuation -- 1.4 Signal Measurement -- 1.4.1 Time ranges and bandwidth -- 1.4.2 Center frequency -- 1.4.3 Ground penetrating radar signal acquisition -- 1.4.4 Characterizing system response -- 1.4.5 Recording dynamic range -- 1.4.6 Antennas -- 1.4.7 Antenna directivity -- 1.4.8 Antenna shielding -- 1.5 Survey Methodology -- 1.5.1 Sampling criteria -- 1.5.2 Ground penetrating radar surveys -- 1.5.3 Common-offset reflection survey -- 1.5.4 Multioffset common midpoint/wide-angle reflection and refraction velocity sounding design -- 1.5.5 Transillumination surveys -- 1.6 Data Analysis and Interpretation -- 1.6.1 Dewow -- 1.6.2 Time gain -- 1.6.3 Deconvolution -- 1.6.4 Migration -- 1.6.5 Topographic correction -- 1.6.6 Two-dimensional and three-dimensional data visualization -- 1.7 Summary -- Chapter 2 Electrical and Magnetic Properties of Rocks, Soils and Fluids -- 2.1 Introduction -- 2.2 Electromagnetic Material Properties: Basic Theory -- 2.3 Permittivity and Conductivity - The Electrical Parameters of Dielectrics -- 2.3.1 Permittivity - ε -- 2.3.2 Conductivity - σ -- 2.3.3 Permeability μ - the magnetic parameters of dielectrics.
2.4 Material Properties - Relationship to Electromagnetic Wave Characteristics -- 2.4.1 Loss factor and skin depth -- 2.5 The Properties of Real Materials - Practical Evaluations -- 2.6 Characterising the Response of Real Materials -- 2.6.1 Basic mixing models -- 2.6.2 Volumetric and inclusion-based mixing models -- 2.7 Summary -- Acknowledgements -- Chapter 3 Ground Penetrating Radar Systems and Design -- 3.1 Introduction and Background -- 3.2 Methodology - Types of Ground Penetrating Radar -- 3.2.1 Impulse -- 3.2.2 Swept frequency-modulated continuous wave -- 3.2.3 Stepped frequency-modulated continuous wave -- 3.2.4 Gated, stepped frequency-modulated continuous wave -- 3.3 Radio Frequency Specifications and Definitions -- 3.3.1 Dynamic range -- 3.3.2 Bandwidth -- 3.3.3 Range resolution -- 3.3.4 Lateral resolution -- 3.3.5 Unambiguous range -- 3.4 General Design Criteria for Ground Penetrating Radar -- 3.4.1 System performance -- 3.5 Impulse Ground Penetrating Radar -- 3.5.1 Theory of operation: Impulse radar -- 3.5.2 System design parameters: impulse radar -- 3.5.3 Implementation of an impulse ground penetrating radar -- 3.6 Continuous-Wave Ground Penetrating Radar -- 3.6.1 Theory of operation - stepped-frequency, continuous-wave radar -- 3.6.2 System design parameters: stepped-frequency radar -- 3.6.3 Implementation of a gated, stepped-frequency, ground penetrating radar -- Chapter 4 Antennas -- 4.1 Introduction -- 4.2 Basic Antenna Parameters -- 4.2.1 Energy transfer from antennas -- 4.2.2 Gain -- 4.2.3 Directivity -- 4.2.4 Coupling energy into the ground -- 4.2.5 Antenna efficiency -- 4.2.6 Sidelobes and back lobes -- 4.2.7 Bandwidth -- 4.2.8 Polarisation - linear, elliptical, circular -- 4.2.9 Antenna phase centre -- 4.2.10 Antenna patterns -- 4.2.11 Time sidelobes and ring-down -- 4.2.12 Antenna footprint.
4.3 Antennas for Ground Penetrating Radar -- 4.3.1 Introduction -- 4.3.2 Coupling into a dielectric -- 4.3.3 Time domain antennas -- 4.3.4 Frequency domain antennas -- 4.3.5 Array antennas -- 4.4 Summary -- 4.5 Definitions -- Chapter 5 Ground Penetrating Radar Data Processing, Modelling and Analysis -- 5.1 Introduction -- 5.2 Background and Practical Principles of Ground Penetrating Radar Data Processing -- 5.3 Ground Penetrating Radar Data Processing: Developing Good Practice -- 5.4 Basic Ground Penetrating Radar Data Processing Steps -- 5.4.1 Data/trace editing and 'rubber-band' interpolation -- 5.4.2 Dewow filtering -- 5.4.3 Time-zero correction -- 5.4.4 Filtering -- 5.4.5 Deconvolution -- 5.4.6 Velocity analysis and depth conversion -- 5.4.7 Elevation or topographic corrections -- 5.4.8 Gain functions -- 5.4.9 Migration -- 5.4.10 Advanced imaging and analysis tools -- 5.4.11 Attribute analysis -- 5.4.12 Numerical modelling -- 5.5 Processing, Imaging and Visualisation: Concluding Remarks -- Acknowledgements -- Part II Environmental Applications -- Chapter 6 Soils, Peatlands, and Biomonitoring -- 6.1 Introduction -- 6.2 Soils -- 6.2.1 Soil properties that affect the performance of ground penetrating radar -- 6.2.2 Soil suitability maps for ground penetrating radar -- 6.2.3 Ground penetrating data and soil surveys -- 6.2.4 Uses of ground penetrating radar in organic soils and peatlands -- 6.3 Biomonitoring -- Chapter 7 The Contribution of Ground Penetrating Radar to Water Resource Research -- 7.1 Introduction -- 7.2 Petrophysics -- 7.3 Hydrostratigraphic Characterization -- 7.4 Distribution/Zonation of Flow and Transport Parameters -- 7.5 Moisture Content Estimation -- 7.6 Monitoring Dynamic Hydrological Processes -- 7.6.1 Recharge/moisture content in the vadose zone -- 7.6.2 Water table detection/monitoring -- 7.6.3 Solute transport in fractures.
7.6.4 Studies of the hyporheic corridor -- 7.6.5 Studies of the rhizosphere -- 7.6.6 Carbon gas emissions from soils -- 7.7 Conclusions -- Chapter 8 Contaminant Mapping -- 8.1 Introduction -- 8.2 Contaminant Types -- 8.3 Electrical Properties of Contaminated Rock and Soil -- 8.3.1 Electrical properties of NAPLs -- 8.3.2 Electrical properties of soil and rock with NAPL contamination -- 8.3.3 Biodegradation effects -- 8.3.4 Inorganics -- 8.4 Typical Distribution of Contaminants -- 8.4.1 DNAPL -- 8.4.2 LNAPL -- 8.4.3 Inorganics -- 8.4.4 Saturated and unsaturated zone -- 8.5 GPR Methodology -- 8.6 Data Processing and Interpretation -- 8.6.1 Visualization -- 8.6.2 Trace attributes -- 8.6.3 Data differencing -- 8.6.4 AVO analysis -- 8.6.5 Detection based on frequency-dependent properties -- 8.6.6 Quantitative estimates of NAPL -- 8.7 Case Studies -- 8.7.1 Controlled DNAPL injection -- 8.7.2 Controlled LNAPL injection -- 8.7.3 Accidental spill sites -- 8.7.4 Leachate and waste disposal site characterization -- 8.8 Summary -- Terms for Glossary -- Part III Earth Science Applications -- Chapter 9 Ground Penetrating Radar in Aeolian Dune Sands -- 9.1 Introduction -- 9.2 Sand Dunes -- 9.3 Survey Design -- 9.3.1 Line spacing -- 9.3.2 Step size -- 9.3.3 Orientation -- 9.3.4 Survey direction -- 9.3.5 Vertical resolution -- 9.4 Topography -- 9.4.1 Topographic surveys -- 9.4.2 Topographic correction -- 9.4.3 Apparent dip -- 9.5 Imaging Sedimentary Structures and Dune Stratigraphy -- 9.6 Radar Facies -- 9.7 Radar Stratigraphy and Bounding Surfaces -- 9.8 Aeolian Bounding Surfaces -- 9.8.1 Reactivation surfaces -- 9.8.2 Superposition surfaces -- 9.8.3 Interdune surfaces -- 9.9 Dune Age and Migration -- 9.10 Stratigraphic Analysis -- 9.11 Ancient Aeolian Sandstones -- 9.12 Three-Dimensional Images -- 9.13 Pedogenic Alteration and Early Diagenesis -- 9.13.1 Evaporites.
9.13.2 Environmental noise -- 9.13.3 Diffractions -- 9.13.4 The water table -- 9.13.5 Multiples -- 9.14 Conclusions -- Acknowledgments -- Chapter 10 Coastal Environments -- 10.1 Introduction -- 10.2 Methodology -- 10.3 Ground Penetrating Radar Strengths in Coastal Environments -- 10.4 Ground Penetrating Radar Limitations in Coastal Environments -- 10.5 Ground Penetrating Radar Studies in Coastal Environments -- 10.6 Examples of Ground Penetrating Radar Images from Coastal Environments -- 10.6.1 Record of coastal progradation -- 10.6.2 Signatures of coastal erosion -- 10.6.3 Coastal Paleochannels -- 10.6.4 Ground penetrating radar signal response to lithological anomalies in coastal dunes -- 10.6.5 Deltas -- 10.6.6 Reservoir characterization - hydrocarbon and hydrogeology -- 10.7 Summary -- Acknowledgments -- Chapter 11 Advances in Fluvial Sedimentology using GPR -- 11.1 Introduction -- 11.2 Scales of Fluvial Deposits and GPR Resolution -- 11.3 Examples of Use of GPR in Fluvial Sedimentology -- 11.3.1 South Esk, Scotland -- 11.3.2 Calamus, Nebraska -- 11.3.3 Brahmaputra (Jamuna), Bangladesh -- 11.3.4 Niobrara, Nebraska -- 11.3.5 South Saskatchewan, Canada -- 11.3.6 Sagavanirktok, northern Alaska -- 11.3.7 Fraser and Squamish Rivers, Canada -- 11.3.8 Pleistocene outwash deposits in Europe -- 11.3.9 Mesozoic deposits of SW USA -- 11.4 Concluding Discussion -- Acknowledgments -- Chapter 12 Glaciers and Ice Sheets -- 12.1 Introduction -- 12.2 Antarctica -- 12.2.1 Alpine glaciers: Dry valleys -- 12.2.2 Polar firn: West Antarctica -- 12.2.3 Englacial stratigraphy: West Antarctica -- 12.2.4 Ice shelf: McMurdo Sound -- 12.2.5 Crevasses: Ross Ice Shelf -- 12.3 Alaska -- 12.3.1 Temperate valley glacier: Matanuska Glacier -- 12.3.2 Temperate valley glacier: Gulkana Glacier -- 12.3.3 Temperate firn: Bagley Ice Field, Alaska.
12.3.4 Temperate hydrology: Black Rapids Glacier.
Abstract:
Ground-penetrating radar (GPR) is a rapidly developing field that has seen tremendous progress over the past 15 years. The development of GPR spans aspects of geophysical science, technology, and a wide range of scientific and engineering applications. It is the breadth of applications that has made GPR such a valuable tool in the geophysical consulting and geotechnical engineering industries, has lead to its rapid development, and inspired new areas of research in academia. The topic of GPR has gone from not even being mentioned in geophysical texts ten years ago to being the focus of hundreds of research papers and special issues of journals dedicated to the topic. The explosion of primary literature devoted to GPR technology, theory and applications, has lead to a strong demand for an up-to-date synthesis and overview of this rapidly developing field. Because there are specifics in the utilization of GPR for different applications, a review of the current state of development of the applications along with the fundamental theory is required. This book will provide sufficient detail to allow both practitioners and newcomers to the area of GPR to use it as a handbook and primary research reference. *Review of GPR theory and applications by leaders in the field *Up-to-date information and references *Effective handbook and primary research reference for both experienced practitioners and newcomers.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Added Author:
Electronic Access:
Click to View