Cover image for Foliations and the Geometry of 3-Manifolds.
Foliations and the Geometry of 3-Manifolds.
Title:
Foliations and the Geometry of 3-Manifolds.
Author:
Calegari, Danny.
ISBN:
9780191524639
Personal Author:
Physical Description:
1 online resource (378 pages)
Series:
Oxford Mathematical Monographs
Contents:
Contents -- Preface -- Acknowledgements -- 1 Surface bundles -- 1.1 Surfaces and mapping class groups -- 1.2 Geometric structures on manifolds -- 1.3 Automorphisms of tori -- 1.4 PSL(2,Z) and Euclidean structures on tori -- 1.5 Geometric structures on mapping tori -- 1.6 Hyperbolic geometry -- 1.7 Geodesic laminations -- 1.8 Train tracks -- 1.9 Singular foliations -- 1.10 Quadratic holomorphic differentials -- 1.11 Pseudo-Anosov automorphisms of surfaces -- 1.12 Geometric structures on general mapping tori -- 1.13 Peano curves -- 1.14 Laminations and pinching -- 2 The topology of S[sup(1)] -- 2.1 Laminations of S[sup(1)] -- 2.2 Monotone maps -- 2.3 Pullback of monotone maps -- 2.4 Pushforward of laminations -- 2.5 Left invariant orders -- 2.6 Circular orders -- 2.7 Homological characterization of circular groups -- 2.8 Bounded cohomology and Milnor-Wood -- 2.9 Commutators and uniformly perfect groups -- 2.10 Rotation number and Ghys' theorem -- 2.11 Homological characterization of laminations -- 2.12 Laminar groups -- 2.13 Groups with simple dynamics -- 2.14 Convergence groups -- 2.15 Examples -- 2.16 Analytic quality of groups acting on I and S[sup(1)] -- 3 Minimal surfaces -- 3.1 Connections, curvature -- 3.2 Mean curvature -- 3.3 Minimal surfaces in R[sup(3)] -- 3.4 The second fundamental form -- 3.5 Minimal surfaces and harmonic maps -- 3.6 Stable and least area surfaces -- 3.7 Existence theorems -- 3.8 Compactness theorems -- 3.9 Monotonicity and barrier surfaces -- 4 Taut foliations -- 4.1 Definition of foliations -- 4.2 Foliated bundles and holonomy -- 4.3 Basic constructions and examples -- 4.4 Volume-preserving flows and dead-ends -- 4.5 Calibrations -- 4.6 Novikov's theorem -- 4.7 Palmeira's theorem -- 4.8 Branching and distortion -- 4.9 Anosov flows -- 4.10 Foliations of circle bundles -- 4.11 Small Seifert fibered spaces.

5 Finite depth foliations -- 5.1 Addition of surfaces -- 5.2 The Thurston norm on homology -- 5.3 Geometric inequalities and fibered faces -- 5.4 Sutured manifolds -- 5.5 Decomposing sutured manifolds -- 5.6 Constructing foliations from sutured hierarchies -- 5.7 Corollaries of Gabai's existence theorem -- 5.8 Disk decomposition and fibered links -- 6 Essential laminations -- 6.1 Abstract laminations -- 6.2 Essential laminations -- 6.3 Branched surfaces -- 6.4 Sink disks and Li's theorem -- 6.5 Dynamic branched surfaces -- 6.6 Pseudo-Anosov flows -- 6.7 Push-pull -- 6.8 Product-covered flows -- 6.9 Genuine laminations -- 6.10 Small volume examples -- 7 Universal circles -- 7.1 Candel's theorem -- 7.2 Circle bundle at infinity -- 7.3 Separation constants -- 7.4 Markers -- 7.5 Leaf pocket theorem -- 7.6 Universal circles -- 7.7 Leftmost sections -- 7.8 Turning corners, and special sections -- 7.9 Circular orders -- 7.10 Examples -- 7.11 Special sections and cores -- 8 Constructing transverse laminations -- 8.1 Minimal quotients -- 8.2 Laminations of S[sup(1)sub(univ)] -- 8.3 Branched surfaces and branched laminations -- 8.4 Straightening interstitial annuli -- 8.5 Genuine laminations and Anosov flows -- 9 Slitherings and other foliations -- 9.1 Slitherings -- 9.2 Eigenlaminations -- 9.3 Uniform and nonuniform foliations -- 9.4 The product structure on E[sub(∞)] -- 9.5 Moduli of quadrilaterals -- 9.6 Constructing laminations -- 9.7 Foliations with one-sided branching -- 9.8 Long markers -- 9.9 Complementary polygons -- 9.10 Pseudo-Anosov flows -- 10 Peano curves -- 10.1 The Hilbert space H[sup(1/2)] -- 10.2 Universal Teichmüller space -- 10.3 Spaces of maps -- 10.4 Constructions and Examples -- 10.5 Moore's theorem -- 10.6 Quasigeodesic flows -- 10.7 Endpoint maps and equivalence relations -- 10.8 Construction of laminations.

10.9 Quasigeodesic pseudo-Anosov flows -- 10.10 Pseudo-Anosov flows without perfect fits -- 10.11 Further directions -- References -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- Y -- Z.
Abstract:
This unique reference, aimed at research topologists, gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: