
Introduction to Relativistic Quantum Chemistry.
Title:
Introduction to Relativistic Quantum Chemistry.
Author:
Dyall, Kenneth G.
ISBN:
9780198032304
Personal Author:
Physical Description:
1 online resource (936 pages)
Contents:
Cover -- Title Page -- Copyright Page -- Preface -- Notation Conventions -- Contents -- I: Foundations -- 1 Introduction -- 2 Basic Special Relativity -- 2.1 Inertial Frames and Newtonian Mechanics -- 2.2 Relativistic Coordinate Transformations -- 2.3 Transformation of Lengths and Relativistic Invariants -- 2.4 Transformation of Velocities -- 2.5 Transformation of Mass -- 2.6 Relativistic Energy -- 2.7 Relativistic Momentum -- 3 Relativistic Electromagnetic Interactions -- 3.1 The Maxwell Equations -- 3.2 Potentials and Gauge Transformations -- 3.3 The Relativistic Potential from a Moving Charge -- 3.4 The Potential Experienced by a Moving Charge -- 3.5 The Interaction of Two Charged Particles -- II: The Dirac Equation: Solutions and Properties -- 4 The Dirac Equation -- 4.1 Quantization of the Nonrelativistic Hamiltonian -- 4.2 Spin in the Nonrelativistic Hamiltonian -- 4.3 The Dirac Equation -- 4.4 The Time-Independent Dirac Equation -- 4.5 The Dirac Wave Function -- 4.6 Nonrelativistic Limit of the Dirac Equation -- 5 Negative-Energy States and Quantum Electrodynamics -- 5.1 Second Quantization -- 5.2 Relativistic Second-Quantized Hamiltonians -- 5.3 Definition of the Vacuum -- 5.4 The Electron-Electron Interaction -- 5.5 The Lamb Shift -- 6 Relativistic Symmetry -- 6.1 The Symmetry of the Relativistic One-Electron Atom -- 6.2 Double Groups -- 6.3 Spin and the SU(2) Group -- 6.4 Spatial Rotations and the SO(3) Group -- 6.5 Transformation of Operators -- 6.6 Transformation of the Dirac Equation under SU(2) and SO(3) -- 6.7 Space Inversion -- 6.8 Reflections and Rotation-Inversions -- 6.9 Time Reversal -- 6.10 Lorentz Transformations and the Lorentz Group -- 7 One-Electron Atoms -- 7.1 Separation of Variables in the Dirac Equation -- 7.2 Angular Wave Functions -- 7.3 Solutions of the Radial Dirac Equation -- 7.4 Behavior at Large r.
7.5 Behavior at Small r -- 7.6 Nuclear Models -- 8 Properties of Relativistic Mean-Field Theory -- 8.1 Mean-Field Formalism in Second Quantization -- 8.2 Structure of the Spinor Rotation Operator -- 8.3 Relativistic Stationarity Conditions -- 8.4 Projection and Bounds -- 8.5 Many-Electron Theory -- III: Four-Component Methodology -- 9 Operators, Matrix Elements, and Wave Functions under Time-Reversal Symmetry -- 9.1 Time Reversal and Kramers-Restricted Representation of Operators -- 9.2 Matrix Elements under Time Reversal -- 9.3 Many-Particle States and Time Reversal -- 10 Matrices and Wave Functions under Double-Group Symmetry -- 10.1 Time-Reversal and Point-Group Symmetry -- 10.2 Time-Reversal Symmetry and Matrix Block Structure -- 10.3 Symmetry of Spinor Components -- 10.4 Symmetries of Two-Particle States -- 10.5 Matrix Elements and Symmetry -- 10.6 Time Reversal and Symmetry in the Many-Electron Hamiltonian -- 11 Basis-Set Expansions of Relativistic Electronic Wave Functions -- 11.1 The Dirac Equation in 2-Spinor Form -- 11.2 Kinetic Balance -- 11.3 Variational Bounds -- 11.4 Matrix Dirac-Hartree-Fock Equations in a 2-Spinor Basis -- 11.5 Kramers-Restricted 2-Spinor Matrix Dirac-Hartree-Fock Equations -- 11.6 Symmetry in the Kramers-Restricted Fock Matrix -- 11.7 Kramers-Restricted Open-Shell Methods -- 11.8 Expansion in Scalar Basis Sets -- 11.9 Basis Set Choice and Design -- 11.10 Comparison of Nonrelativistic and Relativistic SCF Methods -- 12 Correlation Methods -- 12.1 The Reference State -- 12.2 The No-Pair Approximation -- 12.3 Integral Transformations -- 12.4 Kramers-Restricted Møller-Plesset Perturbation Theory -- 12.5 Kramers-Restricted Coupled-Cluster Expansions -- 12.6 Open-Shell Kramers-Restricted Coupled-Cluster Expansions -- 12.7 Configuration Interaction Expansions -- 12.8 The Cost of Configuration Interaction Methods.
12.9 Relativistic Multiconfiguration Self-Consistent Field Theory -- 13 Molecular Properties -- 13.1 Intrinsic Properties -- 13.2 Electric Properties -- 13.3 Gauge Invariance and Finite Basis Sets -- 13.4 Magnetic Properties -- 13.5 Second-Order Properties -- 13.6 NMR Parameters -- 13.7 Alternative Treatment of Magnetic Interactions -- 13.8 Finite Nucleus Effects on Properties -- 13.9 Parity-Violating Interactions -- 14 Density Functional Approaches to Relativistic Quantum Mechanics -- 14.1 A Brief Review of Nonrelativistic Density Functional Theory -- 14.2 The Local Density and Local Exchange Approximations -- 14.3 The Hohenberg-Kohn Theorem for Relativistic N-Particle Systems -- 14.4 Density Functional Theory and the Dirac-Coulomb Hamiltonian -- IV: Approximations to the Dirac Equation -- 15 Spin Separation and the Modified Dirac Equation -- 15.1 The Modified Dirac Equation -- 15.2 Solutions of the Spin-Free Modified Dirac Equation -- 15.3 Modified One-Electron Operators -- 15.4 Modified Two-Electron Operators -- 15.5 Practical Implications of Spin Separation -- 16 Unitary Transformations of the Dirac Hamiltonian -- 16.1 The Foldy-Wouthuysen Transformation -- 16.2 Approximate Foldy-Wouthuysen Transformations -- 16.3 The Douglas-Kroll Transformation -- 16.4 Two-Electron Terms and the Douglas-Kroll-Hess Approximation -- 16.5 Implementation of the Douglas-Kroll Transformation -- 16.6 The Barysz-Sadlej-Snijders Transformation -- 16.7 Transformation of Electric Property Operators -- 16.8 Transformation of Magnetic Property Operators -- 17 Perturbation Methods -- 17.1 The Pauli Hamiltonian -- 17.2 The Breit-Pauli Hamiltonian -- 17.3 Perturbative Treatment of the Lamb Shift -- 17.4 Multiple Perturbation Theory for Many-Electron Systems and Properties -- 17.5 Direct Perturbation Theory -- 17.6 Stationary Direct Perturbation Theory.
17.7 Stationary Direct Perturbation Theory for Many-Electron Systems -- 17.8 Direct Perturbation Theory of Properties -- 18 Regular Approximations -- 18.1 The CPD or ZORA Hamiltonian -- 18.2 Perturbative Corrections to the ZORA Hamiltonian -- 18.3 Nonperturbative Improvements of the ZORA Equation -- 18.4 Many-Electron Systems -- 18.5 Properties in the Regular Approximations -- 19 Matrix Approximations -- 19.1 The Matrix Elimination of the Small Components -- 19.2 Properties of the NESC and UESC Equations -- 19.3 Inclusion of the Two-Electron Terms -- 19.4 Atom-Centered Approximations -- 19.5 Properties in the Matrix Approximations -- 20 Core Approximations -- 20.1 The Frozen-Core Approximation -- 20.2 The Generalized Philips-Kleinman Pseudopotential -- 20.3 Shape-Consistent Pseudospinors and Pseudopotentials -- 20.4 Energetics of Pseudopotentials -- 20.5 Generation of Pseudopotentials -- 20.6 Relativistic Effects in Pseudopotentials -- 20.7 Model Potentials -- 20.8 Energetics of Model Potentials -- 20.9 Model Potential Implementation -- 20.10 Relativistic Effects in Model Potentials -- 20.11 Properties and Core Approximations -- 21 Spin-Orbit Configuration Interaction Methods -- 21.1 Breit-Pauli Spin-Orbit Operators -- 21.2 Douglas-Kroll-Transformed Spin-Orbit Operators -- 21.3 Spin-Orbit Operators for Model Potential and Pseudopotential Methods -- 21.4 Mean-Field Approximations for Spin-Orbit Interaction -- 21.5 Strategies for Spin-Orbit Methods -- 21.6 One-Particle and N-Particle Expansion Spaces -- 21.7 One-Step Methods -- 21.8 Two-Step Methods -- V: The Nature of the Relativistic Chemical Bond -- 22 Relativistic Effects on Molecular Bonding and Structure -- 22.1 Relativistic Effects on Atomic Shell Structure -- 22.2 Spin-Free Effects on Molecular Structure -- 22.3 Spinor Bonds in Diatomic Molecules.
22.4 Hybridization and Bonding in Polyatomic Molecules -- 22.5 Relativistic Effects on Properties -- 22.6 A Final Warning -- Appendix A: Four-Vector Quantities -- Appendix B: Vector Relations -- Appendix C: Elements of Group Theory -- Appendix D: Group Tables -- Appendix E: Change of Metric for Modified Wave Functions -- Appendix F: Two-Electron Gauge Terms for the Modified Dirac Operator -- Appendix G: The Second-Order Term of the Douglas-Kroll Expansion -- Appendix H: Transformed Operators for Electric and Magnetic Properties -- Appendix I: Gauge Term Contributions from the Breit Interaction to the Breit-Pauli Hamiltonian -- Appendix J: Approximations in Relativistic Density Functional Theory -- Appendix K: The Cowan-Griffin and Wood-Boring Equations -- Appendix L: Supplementary Reading -- Bibliography -- Index.
Abstract:
PART I: Foundations. 1. Introduction. 2. Basic Special Relativity. 3. Relativistic Electromagnetic Interactions. PART II: The Dirac Equation: Solutions and Properties. 4. The Dirac Equation. 5. Negative-Energy States and Quantum Electrodynamics. 6. Relativistic Symmetry. 7. One-Electron Atoms. 8. Properties of Relativistic Mean-Field Theory. PART III: Four-Component Methodology. 9. Operators, Matrix Elements and Wave Functions under Time Reversal Symmetry. 10. Matrices and Wave Functions under Double-Group Symmetry. 11. Basis Set Expansions of Relativistic Electronic Wave Functions. 12. Correlation Methods. 13. Molecular properties. 14. Density Functional Approaches to Relativistic Quantum Mechanics. PART IV: Approximations to the Dirac equation. 15. Spin Separation and the Modified Dirac Equation. 16. Unitary Transformations of the Dirac Hamiltonian. 17. Perturbation Methods. 18. Regular Approximations. 19. Matrix Approximations. 20. Core Approximations. 21. Spin-orbit Configuration Interaction Methods. PART V: The Nature of the Relativistic Chemical Bond. 22. Relativistic Effects on Molecular Bonding and Structure. Appendix A: Four-vector Quantities. Appendix B: Vector Relations. Appendix C: Elements of Group Theory. Appendix D: Group Tables. Appendix E: Change of Metric for Modified Wave Functions. Appendix F: Two-Electron Gauge Terms for the Modified Dirac Operator. Appendix G: The Second-Order Term of the Douglas-Kroll Expansion. Appendix H: Transformed Operators for Electric and Magnetic Properties. Appendix I: Gauge Term Contributions from the Breit Interaction to the Breit- Pauli Hamiltonian. Appendix J: Approximations in Relativistic Density Functional Theory. Appendix K: The Cowan-Griffin and Wood-Boring Equations. Appendix L: Supplementary Reading. Bibliography.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Added Author:
Electronic Access:
Click to View