Cover image for Physics of Semiconductors in High Magnetic Fields.
Physics of Semiconductors in High Magnetic Fields.
Title:
Physics of Semiconductors in High Magnetic Fields.
Author:
Miura, Noboru.
ISBN:
9780191523373
Personal Author:
Physical Description:
1 online resource (373 pages)
Series:
Series on Semiconductor Science and Technology ; v.15

Series on Semiconductor Science and Technology
Contents:
Contents -- 1 Introduction -- 2 Electronic states in high magnetic fields -- 2.1 Free electrons in magnetic fields -- 2.2 Landau levels -- 2.3 Bloch electrons in magnetic fields -- 2.3.1 Effective mass approximation -- 2.3.2 Semiclassical treatment -- 2.4 Landau levels in semiconductors -- 2.4.1 Two-band model -- 2.4.2 Conduction bands -- 2.4.3 Valence bands -- 2.4.4 Pidgeon-Brown model -- 2.5 Low dimensional systems -- 2.5.1 MOS-FET and heterostructure -- 2.5.2 Quantum well -- 2.5.3 Superlattice -- 2.5.4 Quantum wire and quantum dot -- 2.6 Electronic states in magnetic fields and electric fields -- 2.6.1 Crossed magnetic and electric fields -- 2.6.2 Edge states -- 2.7 High magnetic field effects on Bloch electrons -- 2.7.1 Breakdown of effective mass theory -- 2.7.2 Magnetic breakdown -- 2.8 Bound electron states in magnetic fields -- 2.8.1 Donor states -- 2.8.2 Exciton states -- 3 Magneto-transport phenomena -- 3.1 Magneto-transport in high magnetic fields -- 3.1.1 Magneto-conductivity and magneto-resistance -- 3.1.2 Effect of scattering -- 3.1.3 Quantum theory of transport phenomena in high magnetic fields -- 3.2 Shubnikov-de Haas effect -- 3.2.1 Shubnikov-de Haas effect in bulk semiconductors and semimetals -- 3.2.2 Shubnikov-de Haas effect in two-dimensional systems -- 3.3 Quantum Hall effect -- 3.3.1 Integer quantum Hall effect -- 3.3.2 Fractional quantum Hall effect -- 3.3.3 Measurement of quantum Hall effect in pulsed magnetic fields -- 3.4 Magneto-tunneling phenomena -- 3.4.1 Magneto-tunneling in tunnel diodes -- 3.4.2 Magneto-tunneling for B ⊥ barrier layers -- 3.4.3 Magneto-tunneling for B

3.5.3 Hot electron magenetophonon resonance -- 3.5.4 Magnetophonon resonance in multi-valley semiconductors -- 3.6 Angular dependent magneto-oscillation -- 4 Cyclotron resonance and far-infrared spectroscopy -- 4.1 Fundamentals of cyclotron resonance -- 4.1.1 Observation of classical cyclotron resonance -- 4.1.2 Quantum theory of cyclotron resonance -- 4.1.3 Cyclotron resonance in anisotropic bands -- 4.1.4 Cyclotron resonance in two-dimensional systems -- 4.1.5 Impurity cyclotron resonance and impurity transition -- 4.2 Non-parabolicity and spin splitting -- 4.2.1 Cyclotron resonance in non-parabolic bands -- 4.2.2 Spin-split cyclotron resonance -- 4.3 Resonance line-width -- 4.3.1 Spin relaxation -- 4.4 Electron-electron interaction -- 4.4.1 Kohn's theorem -- 4.4.2 Mode coupling in spin-split cyclotron resonance -- 4.4.3 Filling factor dependence of effective mass and line-width -- 4.5 Polaron effects -- 4.6 Temperature dependence of effective mass -- 4.7 Spin resonance and combined resonance -- 4.8 Structural phase transitions -- 4.9 Cyclotron resonance in valence bands -- 4.9.1 Hole cyclotron resonance in bulk crystals -- 4.9.2 Hole cyclotron resonance in two-dimensional systems -- 4.10 Unusual band structures and phenomena -- 4.10.1 Camel's back structure -- 4.10.2 Semiconducting diamond -- 4.10.3 Graphite -- 4.10.4 Bi[sub(2)]Se[sub(3)] family -- 4.11 Interplay between magnetic and quantum potentials -- 4.11.1 Short period superlattices with parallel magnetic fields -- 4.11.2 Angular dependence of the effective mass in quantum wells -- 4.11.3 Cyclotron resonance in quantum dots -- 4.12 Magnetic field-induced band cross-over -- 4.12.1 Γ-L cross-over in GaSb -- 4.12.2 Γ-X cross-over in GaAs/AlAs superlattices -- 4.12.3 Semimetal-semiconductor transition -- 4.13 Magneto-plasma phenomena -- 4.13.1 Magneto-plasma.

4.13.2 Helicon wave and Alfvén wave -- 5 Magneto-optical spectroscopy -- 5.1 Interband magneto-optical transition -- 5.1.1 Density of states and the absorption coefficient -- 5.1.2 Magneto-absorption spectra -- 5.2 Exciton spectra -- 5.2.1 Exciton spectra in magnetic fields -- 5.2.2 Dielectric constant -- 5.2.3 Quasi-two-dimensional excitons in quantum wells -- 5.2.4 Magneto-photoluminescence -- 5.3 Magneto-optics of excitons in doped quantum wells -- 5.3.1 Magneto-optical spectra in doped quantum wells -- 5.3.2 Fermi edge singularity -- 5.3.3 Anomalies at integer and fractional filling of the Landau levels -- 5.4 Magneto-optical spectra of short-period superlattices -- 5.4.1 Γ-X cross-over for B ⊥ layers -- 5.4.2 Photoluminescence in type II short-period superlattices and quantum wells -- 5.4.3 Magneto-optics for B

6.4.3 Magnetic field-induced type I - type II transition -- 6.5 Cyclotron resonance in DMS -- 6.5.1 Effect of magnetic ions on the effective mass -- 6.5.2 Cyclotron resonance in III-V magnetic semiconductors -- 7 Experimental techniques for high magnetic fields -- 7.1 Generation of high magnetic fields -- 7.1.1 Steady magnetic fields -- 7.1.2 Pulsed high magnetic fields -- 7.1.3 Ultra-high magnetic fields -- 7.2 Measurement of magnetic fields -- 7.3 Experiments in high magnetic fields -- 7.3.1 Transport measurement -- 7.3.2 Optical measurement -- 7.3.3 Infrared and far-infrared laser spectroscopy -- 7.3.4 Magnetic measurement -- 8 General references -- References -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- Y -- Z.
Abstract:
This book summarizes most of the fundamental physical phenomena which semiconductors and their modulated structures exhibit in high magnetic fields. Readers can learn not only the basic theoretical background but also the present state of the art from the most advanced data in this rapidly growing research area.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: