Cover image for Stochastic Integration Theory.
Stochastic Integration Theory.
Title:
Stochastic Integration Theory.
Author:
Medvegyev, Peter.
ISBN:
9780191526886
Personal Author:
Physical Description:
1 online resource (629 pages)
Series:
Oxford Graduate Texts in Mathematics ; v.No. 14

Oxford Graduate Texts in Mathematics
Contents:
Contents -- Preface -- 1 Stochastic processes -- 1.1 Random functions -- 1.1.1 Trajectories of stochastic processes -- 1.1.2 Jumps of stochastic processes -- 1.1.3 When are stochastic processes equal? -- 1.2 Measurability of Stochastic Processes -- 1.2.1 Filtration, adapted, and progressively measurable processes -- 1.2.2 Stopping times -- 1.2.3 Stopped variables, σ-algebras, and truncated processes -- 1.2.4 Predictable processes -- 1.3 Martingales -- 1.3.1 Doob's inequalities -- 1.3.2 The energy equality -- 1.3.3 The quadratic variation of discrete time martingales -- 1.3.4 The downcrossings inequality -- 1.3.5 Regularization of martingales -- 1.3.6 The Optional Sampling Theorem -- 1.3.7 Application: elementary properties of Lévy processes -- 1.3.8 Application: the first passage times of the Wiener processes -- 1.3.9 Some remarks on the usual assumptions -- 1.4 Localization -- 1.4.1 Stability under truncation -- 1.4.2 Local martingales -- 1.4.3 Convergence of local martingales: uniform convergence on compacts in probability -- 1.4.4 Locally bounded processes -- 2 Stochastic Integration with Locally Square-Integrable Martingales -- 2.1 The Itô-Stieltjes Integrals -- 2.1.1 Itô-Stieltjes integrals when the integrators have finite variation -- 2.1.2 Itô-Stieltjes integrals when the integrators are locally square-integrable martingales -- 2.1.3 Itô-Stieltjes integrals when the integrators are semimartingales -- 2.1.4 Properties of the Itô-Stieltjes integral -- 2.1.5 The integral process -- 2.1.6 Integration by parts and the existence of the quadratic variation -- 2.1.7 The Kunita-Watanabe inequality -- 2.2 The Quadratic Variation of Continuous Local Martingales -- 2.3 Integration when Integrators are Continuous Semimartingales -- 2.3.1 The space of square-integrable continuous local martingales.

2.3.2 Integration with respect to continuous local martingales -- 2.3.3 Integration with respect to semimartingales -- 2.3.4 The Dominated Convergence Theorem for stochastic integrals -- 2.3.5 Stochastic integration and the Itô-Stieltjes integral -- 2.4 Integration when Integrators are Locally Square-Integrable Martingales -- 2.4.1 The quadratic variation of locally square-integrable martingales -- 2.4.2 Integration when the integrators are locally square-integrable martingales -- 2.4.3 Stochastic integration when the integrators are semimartingales -- 3 The Structure of Local Martingales -- 3.1 Predictable Projection -- 3.1.1 Predictable stopping times -- 3.1.2 Decomposition of thin sets -- 3.1.3 The extended conditional expectation -- 3.1.4 Definition of the predictable projection -- 3.1.5 The uniqueness of the predictable projection, the predictable section theorem -- 3.1.6 Properties of the predictable projection -- 3.1.7 Predictable projection of local martingales -- 3.1.8 Existence of the predictable projection -- 3.2 Predictable Compensators -- 3.2.1 Predictable Radon-Nikodym Theorem -- 3.2.2 Predictable Compensator of locally integrable processes -- 3.2.3 Properties of the Predictable Compensator -- 3.3 The Fundamental Theorem of Local Martingales -- 3.4 Quadratic Variation -- 4 General Theory of Stochastic Integration -- 4.1 Purely Discontinuous Local Martingales -- 4.1.1 Orthogonality of local martingales -- 4.1.2 Decomposition of local martingales -- 4.1.3 Decomposition of semimartingales -- 4.2 Purely Discontinuous Local Martingales and Compensated Jumps -- 4.2.1 Construction of purely discontinuous local martingales -- 4.2.2 Quadratic variation of purely discontinuous local martingales -- 4.3 Stochastic Integration With Respect To Local Martingales -- 4.3.1 Definition of stochastic integration.

4.3.2 Properties of stochastic integration -- 4.4 Stochastic Integration With Respect To Semimartingales -- 4.4.1 Integration with respect to special semimartingales -- 4.4.2 Linearity of the stochastic integral -- 4.4.3 The associativity rule -- 4.4.4 Change of measure -- 4.5 The Proof of Davis' Inequality -- 4.5.1 Discrete-time Davis' inequality -- 4.5.2 Burkholder's inequality -- 5 Some Other Theorems -- 5.1 The Doob-Meyer Decomposition -- 5.1.1 The proof of the theorem -- 5.1.2 Dellacherie's formulas and the natural processes -- 5.1.3 The sub- super- and the quasi-martingales are semimartingales -- 5.2 Semimartingales as Good Integrators -- 5.3 Integration of Adapted Product Measurable Processes -- 5.4 Theorem of Fubini for Stochastic Integrals -- 5.5 Martingale Representation -- 6 Itô's Formula -- 6.1 Itô's Formula for Continuous Semimartingales -- 6.2 Some Applications of the Formula -- 6.2.1 Zeros of Wiener processes -- 6.2.2 Continuous Lévy processes -- 6.2.3 Lévy's characterization of Wiener processes -- 6.2.4 Integral representation theorems for Wiener processes -- 6.2.5 Bessel processes -- 6.3 Change of Measure for Continuous Semimartingales -- 6.3.1 Locally absolutely continuous change of measure -- 6.3.2 Semimartingales and change of measure -- 6.3.3 Change of measure for continuous semimartingales -- 6.3.4 Girsanov's formula for Wiener processes -- 6.3.5 Kazamaki-Novikov criteria -- 6.4 Itô's Formula for Non-Continuous Semimartingales -- 6.4.1 Itô's formula for processes with finite variation -- 6.4.2 The proof of Itô's formula -- 6.4.3 Exponential semimartingales -- 6.5 Itô's Formula For Convex Functions -- 6.5.1 Derivative of convex functions -- 6.5.2 Definition of local times -- 6.5.3 Meyer-Itô formula -- 6.5.4 Local times of continuous semimartingales -- 6.5.5 Local time of Wiener processes -- 6.5.6 Ray-Knight theorem.

6.5.7 Theorem of Dvoretzky Erdos and Kakutani -- 7 Processes with Independent Increments -- 7.1 Lévy processes -- 7.1.1 Poisson processes -- 7.1.2 Compound Poisson processes generated by the jumps -- 7.1.3 Spectral measure of Lévy processes -- 7.1.4 Decomposition of Lévy processes -- 7.1.5 Lévy-Khintchine formula for Lévy processes -- 7.1.6 Construction of Lévy processes -- 7.1.7 Uniqueness of the representation -- 7.2 Predictable Compensators of Random Measures -- 7.2.1 Measurable random measures -- 7.2.2 Existence of predictable compensator -- 7.3 Characteristics of Semimartingales -- 7.4 Lévy-Khintchine Formula for Semimartingales with Independent Increments -- 7.4.1 Examples: probability of jumps of processes with independent increments -- 7.4.2 Predictable cumulants -- 7.4.3 Semimartingales with independent increments -- 7.4.4 Characteristics of semimartingales with independent increments -- 7.4.5 The proof of the formula -- 7.5 Decomposition of Processes with Independent Increments -- Appendix -- A: Results from Measure Theory -- A.1 The Monotone Class Theorem -- A.2 Projection and the Measurable Selection Theorems -- A.3 Cramér's Theorem -- A.4 Interpretation of Stopped σ-algebras -- B: Wiener Processes -- B.1 Basic Properties -- B.2 Existence of Wiener Processes -- B.3 Quadratic Variation of Wiener Processes -- C: Poisson processes -- Notes and Comments -- References -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- Y.
Abstract:
This graduate level text covers the theory of stochastic integration, an important area of Mathematics with a wide range of applications, including financial mathematics and signal processing. - ;This graduate level text covers the theory of stochastic integration, an important area of Mathematics that has a wide range of applications, including financial mathematics and signal processing. Aimed at graduate students in Mathematics, Statistics, Probability, Mathematical Finance, and Economics, the book not only covers the theory of the stochastic integral in great depth but also presents the associated theory (martingales, Levy processes) and important examples (Brownian. motion, Poisson process). -.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: