
The Dynamical Yang-Baxter Equation, Representation Theory, and Quantum Integrable Systems.
Title:
The Dynamical Yang-Baxter Equation, Representation Theory, and Quantum Integrable Systems.
Author:
Etingof, Pavel.
ISBN:
9780191523922
Personal Author:
Physical Description:
1 online resource (151 pages)
Series:
Oxford Lecture Series in Mathematics and Its Applications ; v.29
Oxford Lecture Series in Mathematics and Its Applications
Contents:
Contents -- 1 Introduction -- 1.1 The quantum dynamical Yang-Baxter equation -- 1.1.1 The equation -- 1.1.2 Examples of solutions of QDYBE -- 1.1.3 The QDYBE with spectral parameter -- 1.1.4 Tensor category of representations -- 1.1.5 Gauge transformations and classification -- 1.1.6 Dynamical quantum groups -- 1.1.7 The classical dynamical Yang-Baxter equation -- 1.1.8 Examples of solutions of CDYBE -- 1.1.9 Classification of solutions for CDYBE -- 1.2 The fusion and exchange construction -- 1.2.1 Intertwining operators -- 1.2.2 The fusion and exchange operators -- 1.2.3 Fusion and exchange for quantum groups -- 1.2.4 The ABRR equation -- 1.2.5 The universal fusion operator -- 1.2.6 The dynamical twist equation -- 1.3 Traces of intertwiners and Macdonald functions -- 1.3.1 Trace functions -- 1.3.2 Commuting difference operators -- 1.3.3 Difference equations for the trace functions -- 1.3.4 Macdonald functions -- 1.3.5 Dynamical Weyl groups -- 2 Background material -- 2.1 Facts about sl[sub(2)] -- 2.2 Semisimple finite-dimensional Lie algebras and roots -- 2.3 Inner product on a simple Lie algebra -- 2.4 Chevalley generators -- 2.5 Representations of finite-dimensional semisimple Lie algebras -- 2.6 Irreducible highest weight modules -- Shapovalov form -- 3 Intertwiners, fusion and exchange operators for Lie algebras -- 3.1 Intertwining operators -- 3.2 The fusion operator -- 3.3 The dynamical twist equation -- 3.4 The exchange operator -- 3.5 The ABRR equation -- 3.6 The universal fusion and exchange operators -- 4 Quantum groups -- 4.1 Hopf algebras -- 4.2 Representations of Hopf algebras -- 4.3 The quantum group U[sub(q)](sl[sub(2)]) -- 4.4 The quantum group U[sub(q)](g) -- 4.5 PBW for U[sub(q)](g) -- 4.6 The Hopf algebra structure on U[sub(q)](g) -- 4.7 Representation theory of U[sub(q)](g) -- 4.8 Formal version of quantum groups.
4.9 Quasi-triangular Hopf algebras -- 4.10 Quasi-triangular Hopf algebras and representation theory -- 4.11 Quasi-triangularity and U[sub(q)](g) -- 4.12 Twisting -- 4.13 Quasi-classical limit for the QYBE -- 4.14 Quasi-classical limit for the QDYBE -- 5 Intertwiners, fusion and exchange operators for U[sub(q)](g) -- 5.1 Fusion operator for U[sub(q)](g) -- 5.2 Exchange operator for U[sub(q)](g) -- 5.3 The ABRR equation for U[sub(q)](g) -- 5.4 Quasi-classical limit for ABRR equation for U[sub(q)](g) -- 6 Dynamical R-matrices and integrable systems -- 6.1 Classical mechanics vs. quantum mechanics -- 6.2 Transfer matrix construction -- 6.3 Dynamical transfer matrix construction -- 7 Traces of intertwiners for U[sub(q)](g) -- 7.1 Generalized Macdonald-Ruijsenaars operators -- 7.2 Construction of F[sub(V)] (λ, μ) -- 7.3 Quantum spin Calogero-Moser Hamiltonian -- 7.4 F[sub(V)] (λ, μ) for sl[sub(2)] -- 7.5 Center of U[sub(q)](g) and quantum traces -- 7.6 The functions Z[sub(V)] and X[sub(V)] -- 7.7 The function G -- 7.8 Macdonald-Ruijsenaars equations -- 7.9 Dual Macdonald-Ruijsenaars equations -- 7.10 The symmetry identity -- 8 Traces of intertwiners and Macdonald polynomials -- 8.1 Macdonald polynomials -- 8.2 Vector-valued characters -- 9 Dynamical Weyl group -- 9.1 Dynamical Weyl group (for g = sl[sub(2)]) -- 9.2 Dynamical Weyl group (for any finite-dim. simple g) -- References -- Index.
Abstract:
The text is based on an established graduate course given at MIT that provides an introduction to the theory of the dynamical Yang-Baxter equation and its applications, which is an important area in representation theory and quantum groups. The book, which contains many detailed proofs and explicit calculations, will be accessible to graduate students of mathematics, who are familiar with the basics of representation theory of semisimple Lie algebras.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Added Author:
Electronic Access:
Click to View