
Electronic and Optical Properties of Conjugated Polymers.
Title:
Electronic and Optical Properties of Conjugated Polymers.
Author:
Barford, William.
ISBN:
9780191523595
Personal Author:
Physical Description:
1 online resource (279 pages)
Series:
International Series of Monographs on Physics ; v.No. 129
International Series of Monographs on Physics
Contents:
Contents -- 1 Introduction to conjugated polymers -- 2 π-electron theories of conjugated polymers -- 2.1 Introduction -- 2.2 The many body Hamiltonian -- 2.3 The Born-Oppenheimer approximation -- 2.4 Second quantization of the Born-Oppenheimer Hamiltonian -- 2.5 sp[sup(n)] hybridization -- 2.5.1 sp hybridization -- 2.5.2 sp[sup(2)] hybridization -- 2.5.3 sp[sup(3)] hybridization -- 2.5.4 Remarks -- 2.6 π-electron models -- 2.7 Electron-phonon coupling -- 2.7.1 The nuclear-nuclear potential, V[sub(n)]({u[sub(n)]}) -- 2.8 Summary of π-electron models -- 2.8.1 The Hückel model -- 2.8.2 The Su-Schrieffer-Heeger model -- 2.8.3 The Pariser-Parr-Pople model -- 2.9 Symmetries and quantum numbers -- 2.9.1 Spatial symmetries -- 2.9.2 Particle-hole symmetry -- 2.9.3 Quantum numbers -- 2.9.4 State labels -- 3 Noninteracting electrons -- 3.1 Introduction -- 3.2 The noninteracting (Hückel) Hamiltonian -- 3.3 Undimerized chains -- 3.3.1 Cyclic chains -- 3.3.2 Linear chains -- 3.4 Dimerized chains -- 3.4.1 Cyclic chains -- 3.4.2 Linear chains -- 3.5 The ground state and particle-hole excitations -- 3.5.1 The band, charge, and spin gaps -- 3.6 Symmetries -- 3.6.1 Particle-hole symmetry and particle-hole parity -- 3.6.2 Linear chains and inversion symmetry -- 4 Electron-lattice coupling I: Noninteracting electrons -- 4.1 Introduction -- 4.2 The Peierls model -- 4.3 The dimerized ground state -- 4.3.1 The Hückel '4n+2' rule -- 4.4 Self-consistent equations for {Δ[sub(n)]} -- 4.5 Solitons -- 4.5.1 Odd-site chains -- 4.5.2 Even-site chains -- 4.6 Soliton-antisoliton pair production -- 4.7 Polarons -- 4.8 Nondegenerate systems -- 4.9 The continuum limit of the Su-Schrieffer-Heeger model -- 4.10 Dynamics of the Su-Schrieffer-Heeger model -- 4.11 Self-trapping -- 4.12 Concluding remarks -- 5 Interacting electrons -- 5.1 Introduction -- 5.1.1 Broken symmetries.
5.1.2 Undimerized chains -- 5.1.3 Dimerized chains -- 5.2 The weak-coupling limit -- 5.2.1 Undimerized chains -- 5.2.2 Dimerized chains -- 5.3 The strong-coupling limit -- 5.3.1 Low-energy dimerized Heisenberg antiferromagnet -- 5.3.2 High-energy spinless fermion model -- 5.4 The phase diagram of the undoped Pariser-Parr-Pople model -- 5.5 The valence bond method -- 6 Excitons in conjugated polymers -- 6.1 Introduction -- 6.2 The weak-coupling limit -- 6.2.1 The effective-particle model -- 6.2.2 Solutions of the effective-particle model -- 6.2.3 Comparisons to the numerical calculations -- 6.2.4 Refinements of the theory -- 6.3 The strong-coupling limit -- 6.3.1 The effective-particle model -- 6.4 The intermediate-coupling regime -- 6.5 Concluding remarks -- 7 Electron-lattice coupling II: Interacting electrons -- 7.1 Introduction -- 7.2 The Pariser-Parr-Pople-Peierls model -- 7.3 Dimerization and optical gaps -- 7.4 Excited states and soliton structures -- 7.4.1 1[sup(1)]B[sup(-)][sub(u)] state -- 7.4.2 1[sup(3)]B[sup(+)][sub(u)] state -- 7.4.3 2[sup(1)]A[sup(+)][sub(g)] state -- 7.5 Polarons -- 7.6 Extrinsic dimerization -- 7.7 Self-trapping -- 7.8 Concluding remarks -- 8 Optical processes in conjugated polymers -- 8.1 Introduction -- 8.2 Linear optical processes -- 8.3 Evaluation of the transition dipole moments -- 8.3.1 The Franck-Condon principle -- 8.3.2 Electronic selection rules -- 8.3.3 Franck-Condon factors -- 8.3.4 Electronic dipole moments: Application of the exciton model -- 8.4 Nonlinear optical processes -- 8.4.1 The essential states mechanism -- 8.4.2 Third order harmonic generation -- 8.4.3 Electroabsorption -- 8.5 Size-dependencies of χ[sup(n)] -- 9 Electronic processes in conjugated polymers -- 9.1 Introduction -- 9.2 Exciton transfer -- 9.2.1 Exciton transfer integral -- 9.2.2 Coherent transfer -- 9.2.3 Incoherent transfer.
9.2.4 The density matrix approach -- 9.3 Excited molecular complexes -- 9.3.1 Excimers -- 9.3.2 Exciplexes -- 9.4 Screening of intramolecular states -- 9.5 Electron transfer -- 9.5.1 Unimolecular electron transfer -- 9.5.2 Bimolecular electron transfer -- 9.6 The singlet exciton yield in light emitting polymers -- 9.6.1 Introduction -- 9.6.2 Basic model and the rate equations -- 9.6.3 Derivation of the intermolecular interconversion rate -- 9.6.4 Estimate of the interconversion rates -- 9.6.5 Discussion and conclusions -- 10 Linear polyenes and trans-polyacetylene -- 10.1 Introduction -- 10.2 Predictions from the Pariser-Parr-Pople-Peierls model -- 10.2.1 Transition energies -- 10.2.2 Soliton structures -- 10.2.3 Adiabatic potential energy curves -- 10.3 Quantum phonons -- 10.3.1 Results and discussion -- 10.4 Character of the excited states of trans-polyacetylene -- 10.5 Other theoretical approaches -- 11 Light emitting polymers -- 11.1 Introduction -- 11.2 Poly(para-phenylene) -- 11.2.1 Benzene -- 11.2.2 Biphenyl -- 11.2.3 Oligo and poly(para-phenylenes) -- 11.3 Poly(para-phenylene vinylene) -- 11.3.1 Stilbene -- 11.3.2 Oligo and poly(para-phenylene vinylenes) -- 11.4 Other theoretical approaches -- 11.5 The excited states of light emitting polymers -- 11.6 Electron-lattice coupling -- 11.6.1 Noninteracting limit -- 11.6.2 Interacting limit -- 11.7 Concluding remarks -- A: Dirac bra-ket operator representation of one-particle Hamiltonians -- A.1 The Hückel Hamiltonian -- A.2 The exciton transfer Hamiltonian -- B: Particle-hole symmetry and average occupation number -- C: Single-particle eigensolutions of a periodic polymer chain -- C.1 Dimerized chain -- C.2 poly(para-phenylene) -- D: Derivation of the effective-particle Schrödinger equation -- E: Hydrogenic solutions of the effective-particle exciton models -- E.1 The weak-coupling limit.
E.1.1 Odd parity, even n solutions -- E.1.2 Even parity, odd n solutions -- E.1.3 Numerical results -- E.2 The strong-coupling limit -- F: Evaluation of the electronic transition dipole moments -- F.1 The weak-coupling limit -- F.1.1 Transitions between the ground state and an excited state -- F.1.2 Transitions between excited states -- F.2 The strong-coupling limit -- F.2.1 Transitions between the ground state and an excited state -- F.2.2 Transitions between excited states -- G: Valence-bond description of benzene -- H: Density Matrix Renormalization Group method -- H.1 Introduction to the real-space method -- H.1.1 Infinite algorithm method -- H.1.2 Rotation and truncation of the basis -- H.1.3 Symmetries and excited states -- H.1.4 Finite algorithm method -- H.1.5 Application to linear polyenes -- H.2 Local Hilbert space truncation -- References -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- Z.
Abstract:
Conjugated polymers have important technological applications, including solar cells and light emitting displays. They are also active components in many important biological processes. The aim of this book is to describe and explain the electronic and optical properties of conjugated polymers. It focuses on the character and energetic ordering of the elctronic states and relates these properties to experiemental observations in real systems. - ;Conjugated polymers have important technological applications, including solar cells and light emitting displays. They are also active components in many important biological processes. In recent years there have been significant advances in our understanding of these systems, owing to both improved experimental measurements and the development of advanced computational techniques. The aim of this book is to describe and explain the electronic and optical properties of conjugated polymers. It focuses on the character and energetic ordering of the electronic states and relates these properties to experimental observations in real systems. A number of important optical and electronic processes in conjugated polymers are also described. - ;What makes Electronic and Optical Properties of Conjugated Polymers as a whole so enjoyable to read is that it gives a complete overview of the influence of correlation effects on the ground and excited states of those materials. It is a comprehensive treatise aimed at theoretical physicists and chemists working in the field and at graduate students and other researchers who need to analyze their data in terms of theoretical models. The book is long overdue. Physics. Today, November 2006 -.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View