
Mathematics of Evolution and Phylogeny.
Title:
Mathematics of Evolution and Phylogeny.
Author:
Gascuel, Olivier.
ISBN:
9780191513732
Personal Author:
Physical Description:
1 online resource (443 pages)
Contents:
Contents -- List of Contributors -- 1 The minimum evolution distance-based approach to phylogenetic inference -- 1.1 Introduction -- 1.2 Tree metrics -- 1.2.1 Notation and basics -- 1.2.2 Three-point and four-point conditions -- 1.2.3 Linear decomposition into split metrics -- 1.2.4 Topological matrices -- 1.2.5 Unweighted and balanced averages -- 1.2.6 Alternate balanced basis for tree metrics -- 1.2.7 Tree metric inference in phylogenetics -- 1.3 Edge and tree length estimation -- 1.3.1 The least-squares (LS) approach -- 1.3.2 Edge length formulae -- 1.3.3 Tree length formulae -- 1.3.4 The positivity constraint -- 1.3.5 The balanced scheme of Pauplin -- 1.3.6 Semple and Steel combinatorial interpretation -- 1.3.7 BME: a WLS interpretation -- 1.4 The agglomerative approach -- 1.4.1 UPGMA and WPGMA -- 1.4.2 NJ as a balanced minimum evolution algorithm -- 1.4.3 Other agglomerative algorithms -- 1.5 Iterative topology searching and tree building -- 1.5.1 Topology transformations -- 1.5.2 A fast algorithm for NNIs with OLS -- 1.5.3 A fast algorithm for NNIs with BME -- 1.5.4 Iterative tree building with OLS -- 1.5.5 From OLS to BME -- 1.6 Statistical consistency -- 1.6.1 Positive results -- 1.6.2 Negative results -- 1.6.3 Atteson's safety radius analysis -- 1.7 Discussion -- Acknowledgements -- 2 Likelihood calculation in molecular phylogenetics -- 2.1 Introduction -- 2.2 Markov models of sequence evolution -- 2.2.1 Independence of sites -- 2.2.2 Setting up the basic model -- 2.2.3 Stationary distribution -- 2.2.4 Time reversibility -- 2.2.5 Rate of mutation -- 2.2.6 Probability of sequence evolution on a tree -- 2.3 Likelihood calculation: the basic algorithm -- 2.4 Likelihood calculation: improved models -- 2.4.1 Choosing the rate matrix -- 2.4.2 Among site rate variation (ASRV) -- 2.4.3 Site-specific rate variation.
2.4.4 Correlated evolution between sites -- 2.5 Optimizing parameters -- 2.5.1 Optimizing continuous parameters -- 2.5.2 Searching for the optimal tree -- 2.5.3 Alternative search strategies -- 2.6 Consistency of the likelihood approach -- 2.6.1 Statistical consistency -- 2.6.2 Identifiability of the phylogenetic models -- 2.6.3 Coping with errors in the model -- 2.7 Likelihood ratio tests -- 2.7.1 When to use the asymptotic χ[sup(2)] distribution -- 2.7.2 Testing a subset of real parameters -- 2.7.3 Testing parameters with boundary conditions -- 2.7.4 Testing trees -- 2.8 Concluding remarks -- Acknowledgements -- 3 Bayesian inference in molecular phylogenetics -- 3.1 The likelihood function and maximum likelihood estimates -- 3.2 The Bayesian paradigm -- 3.3 Prior -- 3.4 Markov chain Monte Carlo -- 3.4.1 Metropolis-Hastings algorithm -- 3.4.2 Single-component Metropolis-Hastings algorithm -- 3.4.3 Gibbs sampler -- 3.4.4 Metropolis-coupled MCMC -- 3.5 Simple moves and their proposal ratios -- 3.5.1 Sliding window using uniform proposal -- 3.5.2 Sliding window using normally distributed proposal -- 3.5.3 Sliding window using normal proposal in multidimensions -- 3.5.4 Proportional shrinking and expanding -- 3.6 Monitoring Markov chains and processing output -- 3.6.1 Diagnosing and validating MCMC algorithms -- 3.6.2 Gelman and Rubin's potential scale reduction statistic -- 3.6.3 Processing output -- 3.7 Applications to molecular phylogenetics -- 3.7.1 Estimation of phylogenies -- 3.7.2 Estimation of species divergence times -- 3.8 Conclusions and perspectives -- Acknowledgements -- 4 Statistical approach to tests involving phylogenies -- 4.1 The statistical approach to phylogenetic inference -- 4.2 Hypotheses testing -- 4.2.1 Null and alternative hypotheses -- 4.2.2 Test statistics -- 4.2.3 Significance and power -- 4.2.4 Bayesian hypothesis testing.
4.2.5 Questions posed as functions of the tree parameter -- 4.2.6 Topology of treespace -- 4.2.7 The data -- 4.2.8 Statistical paradigms -- 4.2.9 Distributions on treespace -- 4.3 Different types of tests involving phylogenies -- 4.3.1 Testing T[sub(1)] versus T[sub(2)] -- 4.3.2 Conditional tests -- 4.3.3 Modern Bayesian hypothesis testing -- 4.3.4 Bootstrap tests -- 4.4 Non-parametric multivariate hypothesis testing -- 4.4.1 Multivariate confidence regions -- 4.5 Conclusions: there are many open problems -- Acknowledgements -- 5 Mixture models in phylogenetic inference -- 5.1 Introduction: models of gene-sequence evolution -- 5.2 Mixture models -- 5.3 Defining mixture models -- 5.3.1 Partitioning and mixture models -- 5.3.2 Discrete-gamma model as a mixture model -- 5.3.3 Combining rate and pattern-heterogeneity -- 5.4 Digression: Bayesian phylogenetic inference -- 5.4.1 Bayesian inference of trees via MCMC -- 5.5 A mixture model combining rate and pattern-heterogeneity -- 5.5.1 Selected simulation results -- 5.6 Application of the mixture model to inferring the phylogeny of the mammals -- 5.6.1 Model testing -- 5.7 Results -- 5.7.1 How many rate matrices to include in the mixture model? -- 5.7.2 Inferring the tree of mammals -- 5.7.3 Tree lengths -- 5.8 Discussion -- Acknowledgements -- 6 Hadamard conjugation: an analytic tool for phylogenetics -- 6.1 Introduction -- 6.2 Hadamard conjugation for two sequences -- 6.2.1 Hadamard matrices-a brief introduction -- 6.3 Some symmetric models of nucleotide substitution -- 6.3.1 Kimura's 3-substitution types model -- 6.3.2 Other symmetric models -- 6.4 Hadamard conjugation-Neyman model -- 6.4.1 Neyman model on three sequences -- 6.4.2 Neyman model on four sequences -- 6.4.3 Neyman model on n + 1 sequences -- 6.5 Applications: using the Neyman model -- 6.5.1 Rate variation -- 6.5.2 Invertibility.
6.5.3 Invariants -- 6.5.4 Closest tree -- 6.5.5 Maximum parsimony -- 6.5.6 Parsimony inconsistency, Felsenstein's example -- 6.5.7 Parsimony inconsistency, molecular clock -- 6.5.8 Maximum likelihood under the Neyman model -- 6.6 Kimura's 3-substitution types model -- 6.6.1 One edge -- 6.6.2 K3ST for n + 1 sequences -- 6.7 Other applications and perspectives -- 7 Phylogenetic networks -- 7.1 Introduction -- 7.2 Median networks -- 7.3 Visual complexity of median networks -- 7.4 Consensus networks -- 7.5 Treelikeness -- 7.6 Deriving phylogenetic networks from distances -- 7.7 Neighbour-net -- 7.8 Discussion -- Acknowledgements -- 8 Reconstructing the duplication history of tandemly repeated sequences -- 8.1 Introduction -- 8.2 Repeated sequences and duplication model -- 8.2.1 Different categories of repeated sequences -- 8.2.2 Biological model and assumptions -- 8.2.3 Duplication events, duplication histories, and duplication trees -- 8.2.4 The human T cell receptor Gamma genes -- 8.2.5 Other data sets, applicability of the model -- 8.3 Mathematical model and properties -- 8.3.1 Notation -- 8.3.2 Root position -- 8.3.3 Recursive definition of rooted and unrooted duplication trees -- 8.3.4 From phylogenies with ordered leaves to duplication trees -- 8.3.5 Top-down approach and left-right properties of rooted duplication trees -- 8.3.6 Counting duplication histories -- 8.3.7 Counting simple event duplication trees -- 8.3.8 Counting (unrestricted) duplication trees -- 8.4 Inferring duplication trees from sequence data -- 8.4.1 Preamble -- 8.4.2 Computational hardness of duplication tree inference -- 8.4.3 Distance-based inference of simple event duplication trees -- 8.4.4 A simple parsimony heuristic to infer unrestricted duplication trees -- 8.4.5 Simple distance-based heuristic to infer unrestricted duplication trees.
8.5 Simulation comparison and prospects -- Acknowledgements -- 9 Conserved segment statistics and rearrangement inferences in comparative genomics -- 9.1 Introduction -- 9.2 Genetic (recombinational) distance -- 9.3 Gene counts -- 9.4 The inference problem -- 9.5 What can we infer from conserved segments? -- 9.6 Rearrangement algorithms -- 9.7 Loss of signal -- 9.8 From gene order to genomic sequence -- 9.8.1 The Pevzner-Tesler approach -- 9.8.2 The re-use statistic r -- 9.8.3 Simulating rearrangement inference with a block-size threshold -- 9.8.4 A model for breakpoint re-use -- 9.8.5 A measure of noise? -- 9.9 Between the blocks -- 9.9.1 Fragments -- 9.10 Conclusions -- Acknowledgements -- 10 The inversion distance problem -- 10.1 Introduction and biological background -- 10.2 Definitions and examples -- 10.3 Anatomy of a signed permutation -- 10.3.1 Elementary intervals and cycles -- 10.3.2 Effects of an inversion on elementary intervals and cycles -- 10.3.3 Components -- 10.3.4 Effects of an inversion on components -- 10.4 The Hannenhalli-Pevzner duality theorem -- 10.4.1 Sorting oriented components -- 10.4.2 Computing the inversion distance -- 10.5 Algorithms -- 10.6 Conclusion -- Glossary -- 11 Genome rearrangements with gene families -- 11.1 Introduction -- 11.2 The formal representation of the genome -- 11.3 Genome rearrangement -- 11.4 Multigene families -- 11.5 Algorithms and models -- 11.5.1 Exemplar distance -- 11.5.2 Phylogenetic analysis -- 11.6 Genome duplication -- 11.6.1 Formalizing the problem -- 11.6.2 Methodology -- 11.6.3 Analysing the yeast genome -- 11.6.4 An application on a circular genome -- 11.7 Duplication of chromosomal segments -- 11.7.1 Formalizing the problem -- 11.7.2 Recovering an ancestor of a semi-ambiguous genome -- 11.7.3 Recovering an ancestor of an ambiguous genome.
11.7.4 Recovering the ancestral nodes of a species tree.
Abstract:
This book of contributed chapters is authored by renowned scientists and covers recent results in the highly topical area of mathematics in evolution and phylogeny. Each chapter is a detailed overview of a specific topic, from the underlying concepts to the latest results.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View