Cover image for Atomic Physics.
Atomic Physics.
Title:
Atomic Physics.
Author:
Foot, C.J.
ISBN:
9780191523144
Personal Author:
Physical Description:
1 online resource (486 pages)
Series:
Oxford Master Series in Physics, No.7 ; v.No.7

Oxford Master Series in Physics, No.7
Contents:
Series page -- Title page -- Copyright page -- Preface -- Contents -- 1 Early Atomic Physics -- 1.1 Introduction -- 1.2 Spectrum of Atomic Hydrogen -- 1.3 Bohr's Theory -- 1.4 Relativistic Effects -- 1.5 Moseley and the Atomic Number -- 1.6 Radiative Decay -- 1.7 Einstein A and B Coefficients -- 1.8 The Zeeman Effect -- 1.8.1 Experimental Observation of the Zeeman Effect -- 1.9 Summary of Atomic Units -- Exercises -- 2 The Hydrogen Atom -- 2.1 The Schrödinger Equation -- 2.1.1 Solution of the Angular Equation -- 2.1.2 Solution of the Radial Equation -- 2.2 Transitions -- 2.2.1 Selection Rules -- 2.2.2 Integration with Respect to θ -- 2.2.3 Parity -- 2.3 Fine Structure -- 2.3.1 Spin of the Electron -- 2.3.2 The Spin-orbit Interaction -- 2.3.3 The Fine Structure of Hydrogen -- 2.3.4 The Lamb Shift -- 2.3.5 Transitions between Fine-Structure Levels -- Further Reading -- Exercises -- 3 Helium -- 3.1 The Ground State of Helium -- 3.2 Excited States of Helium -- 3.2.1 Spin Eigenstates -- 3.2.2 Transitions in Helium -- 3.3 Evaluation of the Integrals in Helium -- 3.3.1 Ground State -- 3.3.2 Excited States: The Direct Integral -- 3.3.3 Excited States: The Exchange Integral -- Further Reading -- Exercises -- 4 The Alkalis -- 4.1 Shell Structure and the Periodic Table -- 4.2 The Quantum Defect -- 4.3 The Central-Field Approximation -- 4.4 Numerical Solution of the Schrödinger Equation -- 4.4.1 Self-Consistent Solutions -- 4.5 The Spin-Orbit Interaction: A Quantum Mechanical Approach -- 4.6 Fine Structure in the Alkalis -- 4.6.1 Relative Intensities of Fine-Structure Transitions -- Further Reading -- Exercises -- 5 The LS-Coupling Scheme -- 5.1 Fine Structure in the LS-Coupling Scheme -- 5.2 The jj-Coupling Scheme -- 5.3 Intermediate Coupling: The Transition between Coupling Schemes -- 5.4 Selection Rules in the LS-Coupling Scheme -- 5.5 The Zeeman Effect.

5.6 Summary -- Further Reading -- Exercises -- 6 Hyperfine Structure and Isotope Shift -- 6.1 Hyperfine Structure -- 6.1.1 Hyperfine Structure for s-Electrons -- 6.1.2 Hydrogen Maser -- 6.1.3 Hyperfine Structure for l ≠ 0 -- 6.1.4 Comparison of Hyperfine and Fine Structures -- 6.2 Isotope Shift -- 6.2.1 Mass Effects -- 6.2.2 Volume Shift -- 6.2.3 Nuclear Information from Atoms -- 6.3 Zeeman Effect and Hyperfine Structure -- 6.3.1 Zeeman Effect of a Weak Field, μBB A -- 6.3.3 Intermediate Field Strength -- 6.4 Measurement of Hyperfine Structure -- 6.4.1 The Atomic-Beam Technique -- 6.4.2 Atomic Clocks -- Further Reading -- Exercises -- 7 The Interaction of Atoms with Radiation -- 7.1 Setting up the Equations -- 7.1.1 Perturbation by an Oscillating Electric Field -- 7.1.2 The Rotating-Wave Approximation -- 7.2 The Einstein B Coefficients -- 7.3 Interaction with Monochromatic Radiation -- 7.3.1 The Concepts of π-Pulses and π/2-Pulses -- 7.3.2 The Bloch Vector and Bloch Sphere -- 7.4 Ramsey Fringes -- 7.5 Radiative Damping -- 7.5.1 The Damping of a Classical Dipole -- 7.5.2 The Optical Bloch Equations -- 7.6 The Optical Absorption Cross-Section -- 7.6.1 Cross-Section for Pure Radiative Broadening -- 7.6.2 The saturation Intensity -- 7.6.3 Power Broadening -- 7.7 The a.c. Stark Effect or Light Shift -- 7.8 Comment on Semiclassical Theory -- 7.9 Conclusions -- Further Reading -- Exercises -- 8 Doppler-Free Laser Spectroscopy -- 8.1 Doppler Broadening of Spectral Lines -- 8.2 The Crossed-Beam Method -- 8.3 Saturated Absorption Spectroscopy -- 8.3.1 Principle of Saturated Absorption Spectroscopy -- 8.3.2 Cross-Over Resonances in Saturation Spectroscopy -- 8.4 Two-Photon Spectroscopy -- 8.5 Calibration in Laser Spectroscopy -- 8.5.1 Calibration of the Relative Frequency -- 8.5.2 Absolute Calibration.

8.5.3 Optical Frequency Combs -- Further Reading -- Exercises -- 9 Laser Cooling and Trapping -- 9.1 The Scattering Force -- 9.2 Slowing an Atomic Beam -- 9.2.1 Chirp Cooling -- 9.3 The Optical Molasses Technique -- 9.3.1 The Doppler Cooling Limit -- 9.4 The Magneto-Optical Trap -- 9.5 Introduction to the Dipole Force -- 9.6 Theory of the Dipole Force -- 9.6.1 Optical Lattice -- 9.7 The Sisyphus Cooling Technique -- 9.7.1 General Remarks -- 9.7.2 Detailed Description of Sisyphus Cooling -- 9.7.3 Limit of the Sisyphus Cooling Mechanism -- 9.8 Raman Transitions -- 9.8.1 Velocity Selection by Raman Transitions -- 9.8.2 Raman Cooling -- 9.9 An Atomic Fountain -- 9.10 Conclusions -- Exercises -- 10 Magnetic Trapping, Evaporative Cooling and Bose-Einstein Condensation -- 10.1 Principle of Magnetic Trapping -- 10.2 Magnetic Trapping -- 10.2.1 Confinement in the Radial Direction -- 10.2.2 Confinement in the Axial Direction -- 10.3 Evaporative Cooling -- 10.4 Bose-Einstein Condensation -- 10.5 Bose-Einstein Condensation in Trapped Atomic Vapours -- 10.5.1 The Scattering Length -- 10.6 A Bose-Einstein Condensate -- 10.7 Properties of Bose-Condensed Gases -- 10.7.1 Speed of Sound -- 10.7.2 Healing Length -- 10.7.3 The Coherence of a Bose-Einstein Condensate -- 10.7.4 The Atom Laser -- 10.8 Conclusions -- Exercises -- 11 Atom Interferometry -- 11.1 Young's Double-Slit Experiment -- 11.2 A Diffraction Grating for Atoms -- 11.3 The Three-Grating Interferometer -- 11.4 Measurement of Rotation -- 11.5 The Diffraction of Atoms by Light -- 11.5.1 Interferometry with Raman Transitions -- 11.6 Conclusions -- Further Reading -- Exercises -- 12 Ion Traps -- 12.1 The Force on Ions in an Electric Field -- 12.2 Earnshaw's Theorem -- 12.3 The Paul Trap -- 12.3.1 Equilibrium of a Ball on a Rotating Saddle -- 12.3.2 The Effective Potential in an a.c. Field.

12.3.3 The Linear Paul Trap -- 12.4 Buffer Gas Cooling -- 12.5 Laser Cooling of Trapped Ions -- 12.6 Quantum Jumps -- 12.7 The Penning Trap and The Paul Trap -- 12.7.1 The Penning Trap -- 12.7.2 Mass Spectroscopy of Ions -- 12.7.3 The Anomalous Magnetic Moment of the Electron -- 12.8 Electron Beam ion Trap -- 12.9 Resolved Sideband Cooling -- 12.10 Summary of Ion Traps -- Further Reading -- Exercises -- 13 Quantum Computing -- 13.1 Qubits and Their Properties -- 13.1.1 Entanglement -- 13.2 A Quantum Logic Gate -- 13.2.1 Making a CNOT Gate -- 13.3 Parallelism in Quantum Computing -- 13.4 Summary of Quantum Computers -- 13.5 Decoherence and Quantum Error Correction -- 13.6 Conclusion -- Further Reading -- Exercises -- A Appendix A: Perturbation Theory -- A.1 Mathematics of Perturbation Theory -- A.2 Interaction of Classical Oscillators of Similar Frequencies -- B Appendix B: The Calculation of Electrostatic Energies -- C Appendix C: Magnetic Dipole Transitions -- D Appendix D: The Line Shape in Saturated Absorption Spectroscopy -- E Appendix E: Raman and Two-Photon Transitions -- E.1 Raman transitions -- E.2 Two-Photon Transitions -- F Appendix F: The Statistical Mechanics of Bose-Einstein Condensation -- F.1 The Statistical Mechanics of Photons -- F.2 Bose-Einstein Condensation -- F.2.1 Bose-Einstein Condensation in a Harmonic Trap -- References -- Index.
Abstract:
This text will thoroughly update the existing literature on atomic physics. Intended to accompany an advanced undergraduate course in atomic physics, the book will lead the students up to the latest advances and the applications to Bose-Einstein Condensation of atoms, matter-wave inter-ferometry and quantum computing with trapped ions. The elementary atomic physics covered in the early chapters should be accessible to undergraduates when they are first introduced to the subject. To complement. the usual quantum mechanical treatment of atomic structure the book strongly emphasizes the experimental basis of the subject, especially in the later chapters. It includes ample tutorial material (examples, illustrations, chapter summaries, graded problem sets). "An altogether useful, enjoyable book that can be used a resource, course text, and introduction to modern atomic research topics."--CHOICE. "Foot presents a textbook for an undergraduate course in atomic physics for students who understand quantum mechanics at the level of an introductory university course, including the Schrodinger equation in three dimensions and perturbation theory. After describing the basic principles of atomic structures and reviewing the classical ideas, he discusses laser spectroscopy, laser cooling, the Bose-Einstein condensation of dilute atomic vapors, matter-wave interferometry, and ion trapping."--SciTech Book News. 1. Early Atomic Physics. 2. The Hydrogen Atom. 3. Helium. 4. The Alkalis. 5. The LS-coupling scheme. 6. Hyperfine Structure and Isotope Shift. 7. The Interaction of Atoms with Radiation. 8. Doppler-free Laser Spectroscopy. 9. Laser cooling and trapping. 10. Magnetic trapping, Evaporative cooling and BEC. 11. Atom Interferometry. 12. Ion Traps. 13. Quantum Computing. 2. The Hydrogen Atom. 3. Helium. 4. The Alkalis. 5. The LS-coupling scheme. 6. Hyperfine

Structure and Isotope Shift. 7. The Interaction of Atoms with Radiation. 8. Doppler-free Laser Spectroscopy. 9. Laser cooling and trapping. 10. Magnetic trapping, Evaporative cooling and BEC. 11. Atom Interferometry. 12. Ion Traps. 13. Quantum.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: